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Abstract: In recent years, there has been a growing interest in integrating distributed generation (DG) 

technologies into the distribution network (DN) to improve system efficiency, reduce carbon emissions, and 

increase the power system's reliability. However, the optimal placement of DG systems within the DN is a 

difficult task, since it is dependent on several variables, including load demand, renewable energy sources, 

and energy storage systems (ESS). In this context, demand response (DR) programs can play a vital role in 

enhancing the efficiency of DG systems, since they allow consumers to lower their energy usage during peak 

hours and move their demand to off-peak hours. DR and solar photovoltaic (SPV) systems are two prominent 

technologies that can play a substantial role in the power DN. In this paper, a bi-level particle swarm 

optimization (PSO) method is employed to determine the best allocation of DG in the coordination of DR. In 

the suggested methodology, the first level of optimization determines the optimal size and location of DG, 

and the second level of optimization determines the optimal power dispatch in the coordination of DR. The 

proposed method is implemented on the IEEE 33 bus system, and the results demonstrate that the power 

quality parameters have significantly improved. 

Keywords: Bilevel Optimization; Demand Response; Distributed Generation; Particle Swarm Optimization; 

Solar PV. 

INTRODUCTION  

Two essential components of a smart grid system are demand response (DR) and distributed generation 
(DG). The types of DG may be renewable or nonrenewable energy sources. The optimal placement of SPV 

HIGHLIGHTS  
 

• Bilevel approach to enhance penetration of green energy in the power system.  

• Demand response coordination with the optimally-integrated distributed generations. 
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in the DN is contingent on a number of parameters, including the location of the loads, the available solar 
resources, and the DN's capacity. The investigation of the effect of DR on the optimal location of SPV systems 
in the DN is an important topic that has gained considerable attention in recent years. 

DR refers to the capacity of consumers to modify their electricity use in response to price fluctuations or 
other signals. Integration of DR into the DN can aid in the reduction of peak demand, improvement of the 
grid's dependability, and reduction of the need for expensive infrastructure investments [1]. Many methods 
exist for analyzing the influence of DR on the optimal placement of SPV plants in the DN. 

• Capacity planning: DR can help to reduce the peak demand on the DN, which can in turn reduce the 
need for additional generation capacity. This can impact the optimal placement of SPV systems in the 
network, as the capacity requirements may be lower. 

• Load profile: DR can also impact the load profile of the network, which can impact the optimal placement 
of SPV systems. For example, if DR results in a shift in the peak load to a different time of day, the 
optimal placement of SPV systems may be different. 

• Voltage stability: The integration of SPV systems in the DN can impact the voltage stability of the network. 
DR can help to manage voltage fluctuations by adjusting the consumption in response to changes in 
voltage. This can impact the optimal placement of SPV systems, as the locations that can provide the 
most benefit in terms of voltage stability may change [2]. 

• DN configuration: The optimal placement of SPV systems in the DN also depends on the network 
configuration. DR can impact the network configuration by reducing the need for additional infrastructure 
upgrades or by changing the location of the loads. This can impact the optimal placement of SPV 
systems. 
The relationship between energy generation from an SPV system and other parameters is influenced by 

factors such as solar irradiation, panel efficiency, system orientation, shading, and temperature. These 
parameters also affect power quality [3,4]. 

In ref. [5], the authors proposed an integrated technique for incorporating renewable distributed 
generation (RDG) and DR into the planning of low-carbon sustainable distribution systems. In comparison to 
standard planning paradigms, the results illustrate the efficacy of the suggested methodology in enhancing 
the efficiency of RDG operations and reducing the CO2 footprint of DN. The methodology provides a balance 
between economic and environmental benefits, and it has been demonstrated that the integration of RDG 
and DR choices in distribution system planning is beneficial in reducing carbon emissions and minimizing 
costs. This study utilizes an interior-point-method-embedded discrete genetic algorithm to effectively and 
accurately solve the model. 

In ref. [6], the authors demonstrated that how temperature-controlled loads (TCL) demand flexibility can 
be used as part of a DR management architecture to improve the reliability and affordability of the power 
system. Using temperature measurements and consumer preferences, the study measures how flexible TCL 
demand is and predicts that solar power generation will make DR more reliable. The proposed distributed 
DR management architecture simplifies optimization and enhances optimality, resulting in reduced power 
consumption during peak reduction and emergency DR requests and low variability during capacity firming 
requests. Different DR requests are measured using two indices: DR reliability and consumer comfort. The 
proposed technique is implemented on Energy Plus-Matlab co-simulation. 

In ref. [7], the authors proposed a structure for a solar photovoltaic-based microgrid (PV-MG) and looks 
into how DR affects the problem of optimizing its dispatch. The objective is to minimize the total cost of 
running PV-MG and moving energy around in ESS while taking into account different constraints on equality 
and inequality. The case study shows that the proposed optimization model works well to optimize the 
dispatch of the PV-MG and that the non-dominated sorting genetic algorithm-II works well to get Pareto 
solution sets. At the end of the paper, the typical dispatch schemes are looked at to see if the established 
optimization model is reasonable and works. 

The authors of ref. [8] proposed a two-stage robust microgrid coordination strategy to address the 
difficulties of managing uncertain renewable DG resources and load demands in microgrids. Price-based 
demand response (PBDR) is scheduled daily, and dispatchable DG such as microturbines is changed hourly 
to maintain power balance and obtain economic benefits. Coordination of the PBDR and multiple DG units is 
proposed using a two-stage robust optimization model with guaranteed robustness against uncertainty. The 
simulation results demonstrate that the proposed strategy can deal with the unpredictability of renewable 
energy and demand while optimizing microgrids. The optimization is demonstrated with the use of column-
and constraint generation algorithm 

In ref. [9], the authors proposed and concluded the potential of DR and photo voltaic distributed 
generation (PVDG) can be measured, which helps plan sustainable DN with the help of end users. Changes 
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to the rules, like the optional time of use tariff in Brazil, are needed to boost both DR and PVDG at the same 
time. The rational use of electricity, which is based on economic efficiency, is the basis of the method. This 
method gives a complete framework for the benefits and challenges of incorporating DR and/or PVDG into 
planning for power utilities. By doing a thorough analysis of the power grid and figuring out how cost-effective 
DR and/or PVDG are, power companies can figure out the best and most cost-effective ways to meet their 
customers' energy needs. The open distribution system simulator is used to conduct the simulations. 

In ref. [10], the authors presented the method for sizing PV and ESS while taking DR into account gives 
a complete way to optimize the operation of PV and ESS systems while meeting the electricity needs of 
consumers. By taking into account the cost for PV and ESS systems, variation of daily load, and power 
utilities can make informed decisions about the optimal size of PV and ESS systems that will minimize the 
total cost of the system while meeting consumers' electricity needs. The MILP model was implemented in 
GAMS v.24.1.3 and solved using CPLEX v.12 as the solver. 

In ref. [11], transmission expansion planning (TEP) has traditionally been done based on peak demand, 
but this may not be the best or most efficient way to do it. DR and DG are being considered as ways to deal 
with this. These things can have a big effect on how controllable and cost-effective power systems are, both 
in the short and long term. The proposed framework was realized by differential evaluation program. 

In ref. [12], the authors used a direct approach of load flow to optimize the size and location of SPV-
based DGs in the primary distribution system. The objectives include reducing power loss, improving voltage 
profile, and gaining economic benefits. DGs are placed at a single location to enhance system performance, 
and the estimated optimal size of a DG becomes a constraint for locating the SPV-based DGs. 

In ref. [13], the authors suggested the optimal operating method for renewable energy-supported isolated 
microgrids. It employs carbon capture-based technologies to reduce CO2 impact and incorporates an 
emission-averse model. A fee is imposed due to CO2 emissions from diesel engines. The study compares a 
carbon capture unit with a fossil fuel-based unit, considering renewable energy penetration and carbon 
emission factors. Results show the microgrid's highest profitability at 40% RE penetration, with increased 
emission factors negatively affecting economics at that level. 

FORMULATION OF PROBLEM 

In this paper, the following objectives have been considered for the realization of the proposed 
framework: 

Minimizing transmission losses in a distribution network is a crucial aspect of efficient power system 
operation. Transmission losses occur due to resistance in the wires, which leads to a voltage drop and energy 
loss as electricity is transmitted from the source to the end-users. Hence, minimizing power loss is one of the 
objective functions, defined as follows. [14]: 

                                                            £1 = ∑  24
𝑡=1 𝑃L (t)                                                                             (1) 

                    𝑃L (t) = ∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝛼𝑖𝑗 (t)(𝑃𝑖 (t)𝑃𝐽 (t) + 𝑄𝑖 (t)𝑄𝐽 (t)) + 𝛽𝑖𝑗 (𝑡)(𝑄𝑖 (t)𝑃𝑗 (t) − 𝑃𝑖 (t)𝑄𝑗 (t))∀𝑡   (2)            

where 𝛼𝑖𝑗 (t) = 𝑟𝑖𝑗cos (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝑗 (t) and 𝛽𝑖𝑗 (t) = 𝑟𝑖𝑗sin (𝛿𝑖 (t) − 𝛿𝑗 (t))/𝑉𝑖 (t)𝑉𝐽 (t)     

   𝑃L (t) Power transmission losses 

𝑃𝑖 (t) 
Real power at ith node at any time t 

𝑃𝐽 (t) 
Real power at jth node at any time t 

𝑄𝑖 (t) 
Reactive power at ith node at any time t 

𝑄𝐽 (t) 
Reactive power at jth node at any time t 

𝑉𝑖 (t) 
Voltage at ith node at any time t 

𝑉𝐽 (t) 
Voltage at jth node at any time t 

𝑟𝑖𝑗 resistance of branch between ith and jth node 

𝛿𝑖 (t) 
Angle of voltage at ith node 

𝛿𝑗 (t) 
Angle of voltage at jth node 

 
Reverse power flow occurs when DG units generate more power than the local load demands, causing 

excess power to flow back into the grid. This can cause stability and safety issues in the DN, as well as 
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increase the risk of voltage fluctuations and equipment damage. Hence, DG integration considers reversing 
power flow. 

                                                  £2 = ∑  24
𝑡=1 𝑃𝑅 (𝑡)                                                                                       (3) 

                                                  𝑃𝑅 (𝑡) = {
0,  if 𝐼G (𝑡) ≥ 𝐼S

Re (𝑉G (𝑡) 𝐼G (𝑡) 
∗ )  if 𝐼G (𝑡) < 𝐼S. .

                                              (4) 

𝑃𝑅 (𝑡) 
Reverse power at time t 

𝐼G (𝑡)  
Current from grid at time t 

𝑉G (𝑡)  
Voltage of grid at time t 

𝐼S.  
Designated limit of reverse current 

 
Node voltage deviation refers to the difference between the actual voltage level and the desired or 

nominal voltage level at a particular node in an electrical power system. Voltage deviation can be caused by 
various factors, including load variations, reactive power flow, and voltage drop in the transmission and 
distribution lines. Voltage deviations can cause several issues in the power system, including reduced system 
efficiency, increased losses, and damage to equipment. Large voltage deviations can lead to equipment 
failures, voltage collapse, and blackouts. The objective of violation of voltage limits can be stated as follows 
[15]: 

                                                            £3 = (1 + ∑  24
𝑡=1 𝑉𝐷 (𝑡))                                                                                (5) 

                                                  𝑉𝐷 (𝑡) = {

|𝑉Min − 𝑉𝑖 (𝑡) | if 𝑉𝑖 (𝑡) < 𝑉Min. 

0  if 𝑉Min. ≤ 𝑉𝑖 (𝑡) ≤ 𝑉Max. 

ℓ  if 𝑉𝑖(𝑡) > 𝑉Max. 

                                               (6) 

where ℓ is the large value or unacceptable value. 

𝑉𝐷 (𝑡) 
Penalty for deviation of voltage 

𝑉Max.  
Maximum value of permissible voltage at node 

𝑉Min  
Minimum value of permissible voltage at node 

 

OBJECTIVE FUNCTION 

A  fitness function with weightage factors of distinct objective functions is required to accomplish objecti
ves. Fitness function (ϒ1) for level 1 optimization: 

                                                        𝑚𝑖𝑛(ϒ1) = φ × 𝑀 × £3                                                                    (7) 

where 𝑀 = £1 + £2  and φ   is the daily to yearly conversion product.  £1 and £2 are relevant to the power 
and £3 is relevant to voltage.  

The DR planning and scheduling approach of DGs is taken into consideration at level 2 of the 
optimization objectives. The following objective function will be taken into consideration for level 2 of the 
optimization problem: 

                                                          𝑚𝑖𝑛(ϒ2) = 𝑀 × £3                                                                           (8) 

In this context, the fitness function for level 2 is denoted by ϒ2. 
It is vital to have a dispatch strategy, which is determined upon by the DR aggregator. In the level 2 of 

optimization, the dispatch strategies of SPV and DR are considered. This helps to minimize the 
aforementioned fitness function. 

Demand response aggregator 

A demand response aggregator (DRA) is a third-party entity that works with energy consumers to 
manage their energy consumption during periods of peak demand. The aggregator coordinates with multiple 
consumers to reduce their electricity consumption during peak demand periods and sells the reduced energy 
consumption back to the grid operator or utilities as a form of DR. The DRA acts as an intermediary between 
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the grid operator and the energy consumers. It helps the consumers reduce their energy consumption during 
peak hours by offering financial incentives, such as reduced electricity rates, to those who agree to participate 
in demand response programs. The aggregator then aggregates the reduced energy consumption from 
multiple consumers and sells it back to the grid operator or utilities. The DRA uses various technologies and 
strategies to manage energy consumption, such as automated demand response systems, smart 
thermostats, and energy management systems. These technologies allow the aggregator to remotely control 
and adjust energy consumption in real-time, based on grid conditions and market prices [16]. 

DRAs play a critical role in helping grid operators manage peak demand, reduce energy costs, and 
improve system reliability. By incentivizing energy consumers to reduce their energy consumption during 
peak periods, demand response aggregators help to balance the supply and demand of electricity and reduce 
the need for additional generation capacity. 

The following are some of the DR restrictions that are taken into consideration: 

                                                      𝑃𝑖(𝑡) = (𝑃𝐺𝑖(𝑡) − 𝑃𝐷𝑖(𝑡))∀𝑡, 𝑖                                                       (9) 

                                                      𝑄𝑖(𝑡) = (𝑄𝐺𝑖(𝑡) − 𝑄𝐷𝑖(𝑡))∀𝑡, 𝑖                                                             (10) 

                                                    𝑃𝐷𝑖(𝑡) = (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡))∀𝑡, 𝑖                                                            (11) 

                                             ∑  𝑁
𝑖=1 ∑  24

𝑡=1 (𝑃𝑖𝑛,𝑖(𝑡) + 𝑃𝑒𝑙,𝑖(𝑡)) × Δ𝑡 = 𝐸𝑖
𝑇𝑜𝑡𝑎𝑙                                      (12) 

                                           𝑃𝑒𝑙,𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙,𝑖(𝑡) ≤ 𝑚𝑖𝑛 ((𝐶 − 𝑃𝑖𝑛,𝑖(𝑡)), 𝑃𝑒𝑙,𝑖

𝑚𝑎𝑥) ∀𝑡                                      (13) 

                                                     𝑃𝑒𝑙,𝑖
𝑚𝑎𝑥 = µ ∑  24

𝑡=1 𝐿𝑑,𝑖(𝑡)                                                                (14) 

Where 𝐶 and µ is the contract load and DR penetration rate respectively. 

𝑃𝐺𝑖(𝑡) 
Real power generation at ith node for the time period t 

𝑃𝐷𝑖(𝑡) 
Real power demand for the time period t 

𝑄𝐺𝑖(𝑡) 
Reactive power generation at ith node for the time period t 

𝑄𝐷𝑖(𝑡) 
Reactive power demand for the time period t 

𝑃𝑖𝑛,𝑖(𝑡) 
Nonreceptive load at time t 

𝑃𝑒𝑙,𝑖(𝑡) 
Receptive load at time t 

𝐸𝑖
𝑇𝑜𝑡𝑎𝑙 Energy demand per day 

𝐿𝑑,𝑖(𝑡)   
Load per hour for the time period t 

𝑃DG,𝑖 
Real power injection by DG 

𝑃𝐷𝐺
𝑚𝑎𝑥 Maximum value of real power generation by DG 

 
Participants in mandatory DR programs are liable to face financial penalties if they fail to adjust their 

electricity consumption as instructed by the aggregator. The scheduling of demand should aim to strike a 
balance between the total electricity consumption and the available resources throughout the day. Rather 
than simply reducing overall consumption, the objective of DR is to reshape the demand profile. The total 
demand at any given time, denoted as t, is the sum of all types of loads, including both receptive and non-
receptive loads, as shown in equation 11. The receptive load shifts the demand as per the instructions of the 
DRA.   

Equation 12 illustrates the scheduling constraints that must be followed to meet the responsive demand 
while ensuring it does not significantly impact the overall daily demand. The lower and upper limits of the 
responsive demand are represented by equation 13. 

The peak value of the responsive demand is influenced by the level of DR penetration, and further details 
regarding this relationship can be found in equation 14. 

Constraint for SPV output 

The constraint for SPV generation limit is given as: 

                                                        0 ≤ 𝑃DG,𝑖 ≤ 𝑃𝐷𝐺
𝑚𝑎𝑥∀𝑖                                         (15) 
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Constraint for feeder 

The constraint for the thermal limits is given as: 

                                                                𝑰𝒊𝒋(𝒕) ≤ 𝑰𝒊𝒋
𝒎𝒂𝒙 ∀𝒕, 𝒊, 𝒋                                                         (16) 

𝐼𝑖𝑗(𝑡) 
Current flowing between ith and jth Node at t 

𝐼𝑖𝑗
𝑚𝑎𝑥 Maximum permissible value of current 

Constraints for power balance 

The constraints for real power and reactive power are given as: 

                                    
𝑃𝑖(𝑡) = 𝑉𝑖(𝑡) ∑  𝑁

𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗 cos(𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡)) ∀𝑡, 𝑖
                           (17) 

                                  𝑄𝑖(𝑡) = −𝑉𝑖(𝑡) ∑  𝑁
𝑗=1 𝑉𝑗(𝑡)𝑌𝑖𝑗sin (𝜃𝑖𝑗 + 𝛿𝑗(𝑡) − 𝛿𝑖(𝑡))∀𝑡, 𝑖                                      (18) 

𝑌𝑖𝑗 Admittance matrix between ith and jth Node 

𝜃𝑖𝑗 Angle of impedance between ith and jth Node 

   N Number of buses 

Modeling of demand 

The demand modeling of the system is given in the following equations: 

                                                         
𝑃𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑃𝐷,𝑖

0 ∀𝑡, 𝑖
                                                   (19) 

                                                        𝑄𝐷,𝑖(𝑡) = 𝛺𝑖(𝑡)𝑄𝐷,𝑖
0 ∀𝑡, 𝑖                                        (20) 

where 𝛺𝑖(𝑡) is the assigned load factor for the time period t. 

Modeling of PV output 

Solar power generation is dependent on several other elements as well. These factors include the type 
of panel and its area, the angle at which the panel is tilted, and the amount of solar radiation that is received. 
To facilitate this analysis, it is assumed that all other factors will remain identical during the specified time. 
The transformation of the current in relation to the rated voltage may be found as follows: 

                                                       𝐼𝑠𝑚(𝑡) = {
𝐼𝑠𝑚 if 𝑆𝑟(𝑡) ≥ 𝑆𝑟

𝑟

𝐼𝑠𝑚 × 𝑆𝑟(𝑡)/𝑆𝑟
𝑟 if 𝑆𝑟(𝑡) < 𝑆𝑟

𝑟                                                 (21)  

𝐼𝑠𝑚 
Current of solar PV 

𝑆𝑟(𝑡) 
Solar radiation at t 

𝑆𝑟
𝑟 

Rated value of solar radiation for PV 

OPTIMIZATION TECHNIQUE 

Particle Swarm Optimization (PSO) is a way for computers to find the best answer to a problem by 
imitating the way animals act. Each particle in the swarm is a possible answer to the optimization problem, 
and its position and speed change are based on what it has learned and what the whole swarm has learned. 
The objective function tells the swarm where each particle should go. During each iteration, the PSO method 
uses a particle's current position, its best position from before, and the best position found by any other 
particle in the swarm to change its speed and location [17]. This process keeps going until there is a reason 
to stop. At Level 1, optimal decision-making occurs to determine the key planning variables, including the 
location and size of PV systems. Meanwhile, at Level 2, the focus shifts to optimizing the hourly dispatch of 
DR programs. This optimization aims to maximize the operational advantages for the distribution system 
operator (DSO). Any evolutionary method can be used to solve the difficult problem of multilevel optimization. 
Based on a review of the relevant published material, it has been found that PSO is the most common way 
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to solve the DG planning optimization problem [18,19]. The simulation parameters for the optimization 
technique are given in the table 1. The flowchart of bilevel optimization approach is illustrated in Figure 1. 

                                     Table 1. Simulation parameters of multilevel optimization technique. 

Parameters Level-1 Level-2 

Swarm size 20 50 
Inertia weight 1 1 
Inertia Weight Damping Ratio  0.99 0.99 
Personal Learning Coefficient 1.5 1.5 
Global Learning Coefficient 2 2 
Maximum Number of Iterations 50 50 

 

Figure 1. Framework of proposed bilevel optimization approach.    

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Saxena, V.; et al. 8 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24230419, 2024 www.scielo.br/babt 

RESULT 

On the IEEE 33 bus system, the multilevel optimization method that has been suggested will be used 
[20]. The test system is shown in figure 2. In this study, the effects of DR technologies are shown and 
analyzed so that a solution to the problem of finding the optimum way to transmit power in different situations 
and with different constraints can be found. The objective of this research is to improve the efficiency of power 
distribution. Using MATLAB software and a computer with an i3 core processor and 12 gigabytes of random-
access memory, the optimization objectives are resolved with the help of proposed optimization techniques.  

 

 
Figure 2. IEEE 33 bus system 

Case 1 

This scenario considers the base case to demonstrate effectiveness of a recommended technique for 
incorporating SPV into a 33-bus radial distribution system. The objective functions of the research are based 
on the consumption pattern of a typical day [21], and the annual energy loss is calculated using the average 
daily energy loss. The results show the difference between the highest and lowest possible demand, the 
minimum mean voltage, and the annual energy losses for the base scenario. The lowest demand period is 
around 5:00 a.m., while the highest demand period is around 8:00 p.m. According to tables 2 and 3, the 
difference between the highest and lowest possible demand, the minimum mean voltage, and the annual 
energy losses for this base scenario are respectively 5397.73 kW, 0.978178 p.u., and 1426 MWh. 

Case 2 

In this case, the authors optimized the placement of DG in a DN using SPV installations. The results 
showed that incorporating DGs into an optimized method improved power quality parameters such as annual 
energy loss and minimum mean voltage. The annual energy loss decreased by approximately 21.8%, and 
the minimum mean voltage increased from 0.978178 to 0.99634 p.u. The optimal size for SPV installations 
and their locations were outlined in table 3, and the effect of DGs on the pattern of demand, voltage, and 
active power losses were illustrated in figures 3, 4, and 5, respectively. 
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Figure 3. Impact of DGs on demand pattern 

 
Figure 4. Impact of DGs on voltage pattern 

 
Figure 5. Impact of DGs on active power losses 
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Case 3 

This study evaluates the significance of DR approach in the absence of DG coordination. Two levels of 
demand elasticity are assumed and benchmarked. DR rate refers to market demand elasticity. In this case, 
DR rate of 10% and 20% are considered without DG placement. Results show that DR reduces peak demand 
by 14.72% for a 10% DR rate and 18.32% for a 20% DR rate, and yearly energy loss by 5.96% to 8.2%. DR 
also reduces active power losses and increases peak-to-valley disparity. Even without DG, DR can be 
effective. Figures 6 to figure 11 demonstrate the effects of 10% and 20% DR rates on demand, voltage, and 
active power losses. There is negligible impact of DR rate on the voltage profile of the test system as shown 
in figure 7 and figure 10. 

 
Figure 6. Impact of 10% DR rate on demand pattern 

 
Figure 7. Impact of 10% DR rate on voltage pattern 
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Figure 8. Impact of 10% DR rate on active power losses 

 
Figure 9. Impact of 20% DR rate on demand pattern 

 
Figure 10. Impact of 20% DR rate on voltage pattern 
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Figure 11. Impact of 20% DR rate on active power losses 

Case 4 

In this case, after incorporating DGs into DR coordination and planning under system constraints, the 
analysis is done. This scenario integrates DGs with DR scheduling while considering system constraints. 
High DR rates and smaller DGs increase system performance. Annual energy loss has decreased 
significantly. The lowest mean voltage has increased from cases 1 and 2 by 29.03% to 33.31%, depending 
on the degree of DR rates. The load profile is flatter because DGs reduce the gap from maximum to minimum 
demand. Figures 12 to figure 14 show that DGs with a 10% DR rate affect demand, voltage, and active power 
losses. Figures 15 to figure 17 show how DGs with a 20% DR rate affect demand, voltage, and active power 
losses.  

 
Figure 12. Impact of DG and 10% DR rate on demand pattern 
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Figure 13. Impact of DG and 10% DR rate on voltage pattern 

 

Figure 14. Impact of DG and 10% DR rate on active power losses 

 

Figure 15. Impact of DG and 20% DR rate on demand pattern 
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Figure 16. Impact of DG and 20% DR rate on voltage pattern 

 
Figure 17. Impact of DG and 20% DR rate on active power losses 

Table 2. Effect of the coordination of DR with optimally integrated SPV on demand. 

Case 
No.  

Category 
Maximum 
Demand 
(kW) 

Maximum 
Demand 
Mitigation % 

Difference between 
Maximum to 
Minimum Demand 
(kW) 

% Of Maximum 
Loss Mitigation at 
8:00 PM 

1 Base Case 6519 0 5397.73 0 

2 DG 6519 0 6016.39 0 

3 DR@10% 5548 16.1 4166.14 36.09 

 DR@20% 5321 18.42 3730.6 42.77 

4 DG+DR@10% 5370 17.33 4322.87 33.69 

  DG+DR@20% 4790 26.78 3540.31 45.69 
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Table 3. Outcomes of the coordination of DR with optimally integrated SPV. 

Case 
No.  

Category 
Optimal Allocation of 

DG (Bus No., kW) 
Annual Losses 

(MWh) 
Reduced losses 

/ Year (%) 
DG Penetration 

(%) 

1 
Base 
Case  

  1426     

2 DG 
17(1344)-32(1690)-

25(1092) 
1098 23 68.76 

3 DR@10%  1302 8.69  
 DR@20%  1290 9.53  

4 
DG+DR@

10% 
7(1086)-15(1902)-

32(914)  
996 30.15 65.03 

  
DG+DR@

20% 
18(408)-29(1816)-

11(1602)  
934 34.5 63.76 

 

CONCLUSION 

While DGs have proven effective in reducing annual energy losses, it is important to consider their 
potential negative impact on load profile flattening. As the penetration of DGs increases, voltage levels can 
rise, leading to reverse power flow back into the grid. These challenges highlight the limitations of high DG 
penetration within the DN. Incorporating DR helps to balance the load profile, minimize the gap between peak 
and off-peak load demands, and alleviate strain on the system. Put simply, a higher DR rate can improve 
demand normalization efficiency, especially in cases where the penetration level of SPV systems is lower. 
As per the implemented framework, the mitigation of maximum demand, reduced energy losses per year, 
and DG penetration are 26.78%, 34.5%, and 67.76%, respectively. These are the maximum level achieved 
from case 1 to case-4. 

In conclusion, the impact assessment of DR on the optimal placement of SPV systems in the DN has 
shown significant potential for improving the efficiency and effectiveness of renewable energy integration. 
The use of DR strategies can help reduce peak demand and enhance the flexibility of the distribution network, 
allowing for increased penetration of SPV systems while minimizing grid congestion and overloading. 

Through simulation studies and empirical analyses, it has been demonstrated that the integration of 
demand response mechanisms can lead to enhance the power quality parameters and increased penetration 
level of renewable energy sources. The findings of the impact assessment provide useful insights for 
policymakers, utilities, and other stakeholders involved in the planning and management of DN. 

While further research is needed to fully explore the potential of DR on SPV placement, it is clear that 
the incorporation of DR into energy systems planning and design will be an essential component of meeting 
future energy needs sustainably. Ultimately, the impact assessment of DR on the optimal placement of SPV 
systems highlights the importance of adopting a holistic approach to energy systems planning that considers 
the interaction between different components of the energy system and the potential for innovative solutions 
to address complex challenges. 
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