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Abstract: Nonalcoholic fatty liver disease (NAFLD) is a public health problem developed by different 
etiologies, which induces metabolic dysfunctions and triglycerides accumulation in hepatocytes. This lipid 
accumulation can generate lipotoxicity, inflammation and the production of reactive oxygen species, 
collaborating with the progression of liver pathogenesis to more deleterious stage. Among the elements that 
initiate the establishment of liver diseases, pesticides should be considered. Worldwide, the use of 
agricultural chemicals to increase food production may accumulate in the environment, affecting non-target 
organisms. Thus, worldwide legislation must control pesticides use to preserve economies and lives. In this 
context, to address pesticide toxicity, the alternative animal model, Drosophila melanogaster, emerges as 
relevant biotechnological tool to investigate molecular connectors of toxic mechanisms in the establishment 
and development of NAFLD and liver diseases. In this review a comprehensive explanation about pesticides 
on human health and the use of Drosophila melanogaster as an alternative approach to defeat NAFLD will 
be presented. 
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HIGHLIGHTS (MANDATORY) 
 

• Nonalcoholic fatty liver disease as a global public health problem.  

• Pesticides as poisoning elements to lipid metabolism and the liver homeostasis. 

• D. melanogaster as biotechnological tool to detail molecular routes of fatty liver. 
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INTRODUCTION 

Liver diseases are serious problems worldwide and account for approximately 2 million deaths per year 
and continue to increase [1-4]. They comprise a variety of diseases, which include metabolic disruptions, 
such as fat accumulation, hepatitis, organ fibrosis and/or cirrhosis and hepatocellular carcinoma [1,5,6]. 
Among them, nonalcoholic fatty liver disease (NAFLD) or hepatic steatosis is relevant. It begins when 
metabolic dysfunctions of the body lead to the accumulation of triglycerides in hepatocytes. Histologically, 
steatosis establishes when at least 5% of the total weight of the liver are lipids [2].  

Steatosis has different nonalcoholic etiologies including obesity, type 2 diabetes, poor lifestyle, viral 
infections, genetics, and even environmental contaminants, which contribute to the development of this 
metabolic syndrome [2,5-8]. Because of this characteristic, the most accepted theory to explain the origin, 
development, and progression of nonalcoholic hepatic steatosis is the hypothesis of multiple hits [7,9]. This 
hypothesis takes into account the deleterious agents that disrupt organ homeostasis, favoring lipid 
accumulation and subsequent tissue disorganization. In addition, a negative aspect to consider is that at its 
initial steps, steatosis may not result in clinical manifestations; however, as the disease progresses, 
symptoms appear [10]. Nonalcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular 
carcinoma (HCC) result from NAFLD progression to more deleterious stages [2,5,6,11]. Unfortunately, in our 
modern societies, NAFLD is currently considered an epidemiological problem affecting approximately 25% 
of the human population and should be carefully considered because of the lack of effective therapy to control 
or reverse this pathology. Currently, treatment strategies focus on weight loss and insulin resistance 
management through lifestyle changes, some medications and/or surgical procedures [2,5,12]. 

In fact, genetics largely contributes to the onset of steatosis; however, one point to consider is how public 
agencies and governments deal with health concerns and issues. Especially in poor and underdeveloped 
countries, where health systems are not accessible for everybody, the management of NAFLD has been 
considered a serious burden to public policy, because of the increasing number of people suffering from the 
disease [13]. In Latin America, for example, 30.5% of individuals present NAFLD. In addition, 61% of patients 
with NAFLD in South America also have NASH [5,14]. In Brazil, for example, although the incidence of 
NAFLD is not known, ultrasound evaluations estimate that approximately 18% of the population has hepatic 
steatosis [15]. Moreover, in that country, between 2001 and 2010, 853,571 hospital admissions were caused 
by liver diseases, 35% of which resulted from advanced clinical conditions [16], many of which had liver 
steatosis as their etiology. Other countries have their own characteristics correlated to the establishment and 
development of NAFLD, which depend on the population lifestyle and genetics [17]. In general, the mortality 
rates due to complications of NAFLD are ~ 15.44 per 1000 patients per year [2], and cardiovascular 
complications are the most common cause of death among patients with steatosis, especially among lean 
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patients. In addition, chronic kidney diseases, obstructive sleep apnea, and osteopenia are also related to 
NAFLD, affecting both adults and children, decreasing their quality of life [2,11,18,19]. Thus, considering the 
epidemiological characteristics of NAFLD and correlated implications, innovative therapeutics are needed. 

Moreover, a critical aspect that should be considered as a real problem in several communities and 
countries is the large-scale use of environmental pollutants including pesticides, especially in countries 
economically dependent on the agricultural sector [20-22]. Several studies indicate that such agrochemicals 
have cumulative effects and act on non-target organisms even in human health [23-25]; however, there is 
still a lack of studies on the metabolic mechanisms of those compounds on cells that support the 
establishment of liver diseases, including NAFLD. Thus, such investigations are relevant to increase the 
understanding about the establishment and progression of NAFLD, as well as to develop innovative 
strategies to defeat the pathology. 

Based on pointed observations, this study aims to present mechanistic aspects of nonalcoholic fatty liver 
disease and the worldwide problem of pesticides on liver health and their hepatotoxicity A solid and 
interconnected discussion will be presented about those themes, which indicate the need for society behavior 
changes.  Moreover, the alternative animal model, Drosophila melanogaster, is presented as an alternative 
approach for the studies of the effects of toxic agents as pesticides in human diseases and metabolism 
[26,27], considering the limitation of human samples and the genetic similarities between humans and 
Drosophilas, which reinforces the use of this animal as an interesting tool in NAFLD research area. 

 

MATERIAL AND METHODS 

This study was elaborated based on literature search of full articles, reviews, short communications, and 
governmental information on the ISI Web of Science, Scopus and Pubmed databases with the keywords: 
“fatty liver”, “pesticides”, “lipid metabolism” and “Drosophila melanogaster”. The articles were analyzed, and 
relevant information found is presented in this study. 

 

RESULTS: A REVISION OF THE LITERATURE 

Lipid metabolism and its implications in the steatosis process 

Lipids or fatty acids (FAs) in our diet are required to maintain cells and the entire body. In a cell, FAs are 
incorporated into the structure of membranes, they also can be stored, act as messenger molecules in cell 
signaling, or be used as an energy source due to their metabolism in oxidative reactions [28,29]. Those 
integrated reactions in a dynamic equilibrium maintain a healthy body; otherwise, the unbalanced equilibrium 
may result in pathogenesis [28]. Particularly, NAFLD begins with the intrahepatic accumulation of fat, mainly 
in the form of triglycerides (TGs), due to the imbalance absorption of free FAs that are incorporate through 
food ingestion, de novo lipogenesis (DNL) and decreased lipid oxidation [5,30]. After a meal, FA molecules 
are mostly absorbed from the circulation through fatty acid carrier proteins (FATPs). In addition, food 
ingestion stimulates metabolism and insulin release, which activates the glycolytic pathway and synthesis of 
lipogenic enzymes [31,32].  

During the FA metabolism, citrate is produced as an intermediate molecule of oxidative reactions, which 
are metabolized by the ATP citrate lyase (ACLY), producing acetyl-CoA, which triggers the DNL. For that, 
the enzyme acetyl-CoA carboxylase (ACC) transforms acetyl-CoA into malonyl-CoA, whose levels are 
maintained in a dynamic equilibrium by malonyl-CoA decarboxylase (MLYCD or MCD), again producing 
acetyl-CoA (Figure 1). Moreover, increased concentrations of malonyl-CoA, allosterically inhibit carnitine 
palmitoyl transferase (CPT-1) in the outer membrane of the mitochondria, blocking the transport of fatty acids 
into the organelle, and favoring the FA esterification reactions, and synthesis of triglycerides [33,34]. On the 
other hand, low malonil-CoA concentrations favor the transport of FAs for beta-oxidation reactions. 

During lipid biosynthesis, the fatty acid synthase (FASN) enzyme uses acetyl-CoA and malonyl-CoA 
molecules as substrate in chemical reactions to produce mainly palmitate, or palmitic acid (16:0), which can 
be metabolized to different FAs by intermediation of the stearyl-CoA desaturase 1 enzyme (SCD1) [35,36]. 
To be metabolized, the synthesized FAs must be activated by the long-chain acyl-Coa-synthetase (ACSL), 
which adds an acetyl-CoA group to the lipid molecules. Once activated, FAs can be (1) degraded in oxidative 
reactions, (2) stored and/or (3) used for membrane biosynthesis or cell signaling [35,36]. 
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Figure 1. Schematic representation of lipid metabolic routes relevant to NAFLD establishment and progression 

Moreover, other elements assist to strictly control lipid metabolism, and among them, transcription factors 
are relevant molecules in cellular signaling. The sterol regulatory binding protein 1c (SREBP1c), the 
carbohydrate response element binding protein (ChREBP), the peroxisome proliferator-activated receptors 
(PPARs), among others, play relevant functions in transcriptional control of important molecules in lipid 
metabolism and cell signaling network [29]. In addition, studies have demonstrated the effects of epigenetics 
and the intestinal microbiota in liver metabolism in the steatosis establishment [24,37,38], reinforcing the 
effects of the environment in controlling metabolism. 

 As previously described, deleterious stimuli disrupt hepatic metabolism and lipid accumulation in 
hepatocytes, which may cause NAFLD and lipotoxicity. Studies indicated that lipotoxicity correlates with the 
production of toxic lipid metabolites, such as ceramides, lysophosphatidylcholine, diacylglycerol and 
metabolites of cholesterol [39,40]. At the same time, lipotoxicity triggers the oxidative stress process and the 
production of reactive oxygen species (ROS), which alters mitochondrial function [41,42]. Mitochondrial 
dysfunction decreases ATP production and further increases the accumulation of toxic lipid intermediates, 
which accentuate the production of ROS and cell death mechanisms [32,40]. Together, metabolic changes 
favor the establishment of inflammatory conditions in the liver and the progression of pathogenesis to 
cirrhosis and even HCC [7,32,39,40,43]. 

Moreover, considering the deleterious stimuli that modify liver metabolism, several xenobiotics, including 
pesticides used in crops, are environmental pollutants that have been correlated with hepatotoxic capacities 
[41,44-46] as the development of fatty liver associated with toxic compounds (TAFLD) [44-49]. In addition, 
health screening to monitor people that work in agriculture fields, who are often exposed to toxic compounds, 
has not been shown to effectively detect TAFLD or the progression of pathogenesis. These results indicate 
that innovative ways to detect TAFLD and other hepatotoxicities should be developed. Moreover, directly or 
indirectly the entire population is exposed to agrochemicals, which may contribute directly to liver 
dysfunctions and diseases. The exposition and the consequences of that must be considered seriously. 

Phytosanitary and its toxicity in lipid metabolism: an alarming situation to liver health 

Phytosanitary products, also known as agrotoxics, pesticides, among others, are chemicals widely used 
in agriculture throughout the world for pest control to improve productivity of the agriculture commodities [20]. 
These substances are harmful to different classes of organisms and can be classified according to their target 
organism as insecticides, herbicides, and fungicides, for example [50]. However, many of these compounds 
accumulate in the environment and are toxic to non-target organisms [25,51,52] and, as previously 
mentioned, the large-scale use of the chemicals puts human health at risk [20,45,50,52,53]. Among the most 
used phytosanitary products organophosphates, organochlorinated, carbamates and pyrethroids takes 
relevant place [50]. Those compounds act on special metabolic routes inducing cellular damage and even 
death in affected organisms.  
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Organophosphates are pesticides whose esters are derived from phosphoric acid and promote neural 
hyper excitation by negatively modulating acetylcholinesterase activity, which cause cholinergic crises in 
target organisms [54]. Organochlorinated are organic compounds containing covalent bonded atoms of 
chlorine in its chemical structure. This class of pesticide is also very toxic to the non-target animals, even 
humans, causing a series of acute or chronic sequelae, such as neurological damage in contaminated 
organisms. In some countries, as in Brazil, because of their aggressiveness to the environment, the 
chemicals were substituted by other classes of pesticides [55]. Another widely used agrochemical is 
carbamate. This class of compounds is derived from carbamic acid and their structure consists mainly of an 
amide-ester bond. These agrochemicals have been used in various types of cultivars because of their rapid 
effect on target organisms [50]; however, adverse side effects of the chemical on non-target organisms have 
also been documented [56,57]. Finally, pyrethroids, which are the oldest class of pesticides, originally 
extracted from plants of the genus Pyrethrum, have still widely used around the world; and now these 
phytosanitary compounds are chemically synthesized. They reduce acetylcholinesterase activity, act on 
voltage-dependent Na+ channels, causing depolarization of nerve cells, neuronal excitation and death of the 
target organism [55]. These chemicals are frequently used to control insects and domestic pests, because of 
their lower environmental toxicity, due to their decomposition by sunlight. However, studies have 
demonstrated that these pesticides can alter the resistance of insects, creating an environmental imbalance, 
which is a serious concern [58-60]. 

Pesticide use started to scale up during the so-called “Green Revolution” which began in the 1960s 
supported by the technical development of agriculture machines, seeds, fertilizers and pesticides. This 
modernization in agriculture increased the production of seeds worldwide, and since then pesticides have 
been used on a large scale [61]. However, considering their ability to poison the environment and human 
health, many countries have tried control the total amount of pesticides used in crop fields, and even prohibit 
the use of some of them [62]. Table 1 lists the 10 best-selling pesticides in the world. Accordingly, the 
herbicide glyphosate [N-(phosphonomethyl) glycine], which belongs to the organophosphate group is the 
most widely used, followed by the 2,4-D and Mancozeb, despite the immense concerning about the unhealth 
effects of these chemical compounds to humans and other animals and to the environmental equilibrium [55]. 
Table 1 also suggests that it will be a long journey until the rational use of agrochemicals is achieved and the 
need to adopt laws that preserve the country’s economies and environmental and populations health. 
Moreover, comparing the use of pesticides in different countries, it is observed that economies dependent on 
agricultural activities employ large number of pesticides. The exacerbated consumption of pesticides has 
made Brazil one of the largest consumers of these compounds in the world [63]. In addition, Brazilian 
legislation has flexibility and favors the use of pesticides on large scale, which should be considered carefully, 
because they could compromise the equilibrium of the environment and the population’s health [23,24]. For 
humans, the main route of pesticides contamination is through the food chain [64]. Residues of these 
compounds can be found both in water and in food and are often routinely ingested without causing symptoms 
of acute intoxication. However, the frequent exposure to pesticides has been associated with adverse effects 
causing metabolic disorders, cancer, problems with fetal development, among others [20,45,46,53,64,65]. 
Reinforcing such observations, significant number of evidence indicate that the exposure to phytosanitary 
products is a serious risk factor for the development of NAFLD, since they disrupt homeostasis, alter the 
energetic metabolism and unbalanced the release of hormones that maintain the equilibrium 
[45,46,48,53,56,66].  
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                      Table 1. Ten best-selling active ingredients – 2020. 

Top 10 Best-Selling Active Ingredients - 2020 

Unit of measurement: tons of active ingredients (AI) 

Ranking 
Active 
Ingredient 

Classes (according to 
the nature of the 
organism to be fought) 

Chemical group 
Sales 
(ton. AI) 

Banned countries (PAN, 2021) 
Total bans for 
active 
ingredient 

1º 
Glyphosate 
and its salts 

Herbicide Organophosphate 246.017,51 Luxembourg; Mexico; Vietnam 3 

2º 2,4-D Herbicide Dinitrophenols 57.597,57 Mozambique; Norway; Vietnam 3 

3º Mancozeb Acaricide/ Fungicide Dithiocarbamates 50.526,87 EU*; Saudi Arabia; UK* 29 

4º Atrazine Herbicide Triazine 33.321,11 

Cape Verde; Chad; Egypt; EU; Gambia; 
Mauritania; Morocco; Niger; Oman; State of 
Palestine; Senegal; Switzerland; Togo; 
UK; Uruguay 

41 

5º Acephate Acaricide/ Insecticide Organophosphate 29.982,50 
China; EU; Indonesia; Malaysia; Oman; 
State of Palestine; Serbia; Switzerland; UK 

35 

6º Chlorothalonil Fungicide Isophthalonitrile 24.191,03 
Colombia; EU; State of Palestine; Saudi 
Arabia; Switzerland; UK 

32 

7º Malathion Acaricide/ Insecticide Organophosphate 15.702,11 
EU; Indonesia; State of Palestine; 
Switzerland; Syria; UK 

32 

8º Sulphur Acaricide/ Fungicide Inorganic 11.390,90 - - 

9º Imidacloprid Insecticide Neonicotinoid 9.401,65 EU*; UK* 28 

10º Chlorpyrifos Acaricide/ Insecticide Organophosphate 8.864,88 
EU*; Indonesia; Morocco; State of 
Palestine; Saudi Arabia; Sri Lanka; 
Switzerland; UK*; Vietnam 

35 

          * = Not approved 
Source: Adapted from AGROFIT and IBAMA / Consolidation of data provided by companies registering technical products, pesticides and the like, according to 
art. 41 of decree no. 4074/2002. Last updated data on 06/14/2021. 

 
 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Oliveira-Júnior, F.C.; et al. 7 
 

 
Brazilian Archives of Biology and Technology. Vol.67: e24230091, 2024 www.scielo.br/babt 

Considering the lipid metabolism of humans and animals, the phytosanitary products act through different 
mechanisms. Initially, they can change the pattern of lipid absorption through the intestine due to the induction 
of dysbiosis, the intestinal barrier and the metabolites released by bile secretion [53,56]. Pesticides can also 
interfere in the process of TG storage in the adipose tissues and liver and induce obesogenic effects in the 
organ [67,68], which may be connected to the development of insulin resistance, representing a higher risk 
for the development of type 2 diabetes and, consequently, NAFLD [53,69,70]. The ability of pesticides to 
unbalance lipid homeostasis is extensively reviewed in the literature. These substances can modulate the 
activation of molecular connectors of cellular signaling in lipid metabolism, increasing hepatic DNL and the 
accumulation of FAs in the liver [29,68]. Agrochemicals also activate molecules and metabolic pathways 
connected to the detoxification processes of xenobiotic agents. Among them, the activation of the nuclear 
receptor pregnane X (PXR) is observed [71]. Those transcription factors activate multiple genes involved in 
the metabolism of xenobiotics. PXR can also activate the peroxisome proliferator-activated receptor gamma 
(PPARγ), an important regulator of lipid metabolism, by favoring the hepatic uptake of FA molecules in the 
circulation and their accumulation within cells in lipid droplets [72]. In addition, positive PXR activation can 
decrease CPT1a enzyme levels, decreasing the β-oxidation process and resulting in greater accumulation 
of intracellular lipids [68]. 

Another xenobiotic detoxifying enzyme activated by pesticides is the cytochrome P450 complex, which 
induces ROS production [73,74] and is a relevant risk factor for the development and progression of NAFLD. 
Studies have indicated that the increased ROS production by pesticides is due to the reduction of the 
competence of the antioxidative system of the cell, since those compounds can alter the levels of antioxidant 
enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and 
glutathione reductase (GR) [41,69] This reduction in the antioxidant system changes the cellular signaling of 
adverse outcome pathways (AOP), which alter the activation pattern of receptors and transcription factors, 
further increasing the negative feedback of cell regulation against deleterious agents [75,76]. 

Therefore, the evaluation of cellular and molecular events that occur in cells exposed to the phytosanitary 
will help in the rational use of chemical compounds to ensure the quality of life of the population and the 
country’s economy. This observation is relevant, considering that pesticides modulate gene expression in a 
negative way [77,78], which affects the fine-tuned regulation of the metabolism, contributing to the increasing 
number of steatosis and other liver diseases in modern societies [44,46]. Thus, investigating the molecular 
transactivation of cellular pathways to mitigate TAFLDs is relevant. 

The alternative animal model Drosophila melanogaster as a biotechnological approach to defeat 
NAFLD-pesticide dependence 

The liver is one of the main organs affected by drugs and other chemical compounds including pesticides. 
Considering its high metabolic rate, changes in its homeostasis caused by environmental compounds and 
other chemicals may lead liver to serious pathogenesis and even cancer. Over the last decades, 
technological advances have enabled the elucidation of metabolic routes and a large number of studies 
address the effects of environmental contaminants on human health and on the establishment of liver 
diseases. Some of them use in silico analyses [79], cell culture approaches [74,76,78] and animal models 
[80], considering the limitation of human samples. In addition, systematic reviews, and meta-analyses of toxic 
agents on liver health have been conducted over the last decade, demonstrating the relevance of this 
investigative research area. However, several of these models have high operating costs, delayed 
experimental standardization and ethical issues [27]. Therefore, alternative methodologies that allow 
systemic analysis of the effect of pesticides and toxic contaminants in a fast and practical manner are 
mandatory to our modern society. 

Over the last years, alternative animal models have emerged in studies of toxic effects of chemicals, 
pesticides, and new products as nanomaterials [81,82]. In addition, those models have been contributing to 
mechanistic studies allowing a deep understanding of molecular and biochemical effects of the xenobiotics 
to targets and non-target animals. Among the innovative models, Caenorhabditis elegans [83,84], Daphnia 
magna [85,86] and Danio rerio [87] have been used and largely contributed to predictive toxicology area 
becoming a novel platform for a large-scale investigation of toxicants. Another alternative model that has 
emerged as a powerful tool in toxicological area is Drosophila melanogaster. This model has been studied 
since its introduction by Thomas H. Morgan at the beginning of century XX, and, in the last two decades, 
emphatic use of this animal in toxicology has been increasing [81,88] and among the studies, the toxicological 
effects of the pesticides have been explored. 
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Particularly, extensive literature presents results of physiological effects of the pesticides using D. 
melanogaster as an alternative animal model m. Table 2 summarizes many of those references found in the 
literature and some are presented and discussed in a sequence. As an example of those studies, Leão and 
coauthors [114] demonstrated that the exposure of D. melanogaster to the herbicide Palace® (a mixture of 
active 2,4-D and picloram ingredients) increased the mortality rate in adult flies in a dose-dependent manner. 
The authors also observed adverse effects on the development and behavior of flies, possibly related to 
mitochondrial dysfunction. In Mandi and coauthors [113], the insecticide acephate reduced the body weight 
of adult flies in a dose-dependent manner, caused changes in testicular structure, reduced the viability of 
germinative cells, increased the activity of enzymes correlated to oxidative stress, among other negative 
effects on the flies’ homeostasis. In another study, Saraiva and coauthors [118] exposed flies to the fungicide 
mancozeb through the diet. The results demonstrated increased mortality rates and locomotor dysfunction in 
a time-dose-dependent manner. In addition, increased oxidative stress and changes in the activities of 
antioxidant enzymes, such as CAT, glutathione s-transferase (GSTs) and SOD were observed as a result of 
mancozeb activity in flies. Other studies point to relevant aspects of the toxicity mechanism, reinforcing the 
relevance of this alternative model for the biological sciences and health. 

    Table 2. D. melanogaster as an alternative animal for toxicity investigation in academy. 

Year Publication Reference 

2022 Rotenone mediated developmental toxicity in Drosophila melanogaster [88] 

2022 Characterization of a novel pesticide transporter and P-glycoprotein orthologues 
in Drosophila melanogaster 

[89] 

2022 Age-related tolerance to paraquat-induced parkinsonism in Drosophila 
melanogaster 

[90] 

2022 Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and 
protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila 
melanogaster 

[91] 

2022 Herbicide Roundup shows toxic effects in nontarget organism Drosophila [92] 

2022 Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in 
Drosophila melanogaster 

[93] 

2022 Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of 
Germ Cells in the Female Adult Ovary 

[94] 

2022 Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated 
ROS, lipid dysregulation, and neurodegeneration in flies 

[95] 

2022 Short exposure to nitenpyram pesticide induces effects on reproduction, 
development and metabolic gene expression profiles in Drosophila melanogaster 
(Diptera: Drosophilidae) 

[96] 

2022 Using tissue specific P450 expression in Drosophila melanogaster larvae to 
understand the spatial distribution of pesticide metabolism in feeding assays 

[97] 

2021 An integrated host-microbiome response to atrazine exposure mediates toxicity in 
Drosophila 

[98] 

2021 Effects of some insecticides (deltamethrin and malathion) and lemongrass oil on 
fruit fly (Drosophila melanogaster) 

[99] 

2021 Chronic exposure to paraquat induces alpha-synuclein pathogenic modifications in 
Drosophila 

[100] 

2021 Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular 
hydrocarbon profile and sexual behavior in Drosophila melanogaster adults 

[101] 

2021 Transcriptomic identification and characterization of genes commonly responding to 
sublethal concentrations of six different insecticides in the common fruit fly, 
Drosophila melanogaster 

[102] 

2021 Protective effect of Catharanthus roseus plant extracts against endosulfan and its 
isomers induced impacts on non-targeted insect model, Drosophila melanogaster 
and live brain cell imaging 

[103] 

2021 Chlordane exposure causes developmental delay and metabolic disorders in 
Drosophila melanogaster 

[104] 

2021 Dietary behavior of Drosophila melanogaster fed with genetically-modified corn or 
Roundup® 

[105] 
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2021 Genetic basis of susceptibility to low-dose paraquat and variation between the 
sexes in Drosophila melanogaster 

[106] 

2021 Oxidative stress and decreased dopamine levels induced by imidacloprid exposure 
cause behavioral changes in a neurodevelopmental disorder model in Drosophila 
melanogaster 

[107] 

2021 Mancozeb impairs mitochondrial and bioenergetic activity in Drosophila 
melanogaster 

[108] 

2020 Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster [109] 

2020 Sublethal larval exposure to imidacloprid impacts adult behaviour in Drosophila 
melanogaster 

[110] 

2020 Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering 
neurological and metabolic impairments in Drosophila 

[111] 

2020 Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: 
Insights from locomotor analysis and molecular modeling 

[112] 

2020 
 

Potential risk of organophosphate exposure in male reproductive system of a non-
target insect model Drosophila melanogaster  

[113] 

2019 Toxicological evaluation of the herbicide Palace® in Drosophila melanogaster [114] 

2019 Effect of herbicide glyphosate on Drosophila melanogaster fertility and lifespan [115] 

2019 Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune 
pathways 

[116] 

2019 Atrazine or bisphenol A mediated negative modulation of mismatch repair gene, 
mlh1 leads to defective oogenesis and reduced female fertility in Drosophila 
melanogaster 

[117] 

2018 Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and 
modulates Nrf2 and HSP70/83 

[118] 

2018 Azadirachtin effects on mating success, gametic abnormalities and progeny 
survival in Drosophila melanogaster (Diptera) 

[119] 

2018 Azadirachtin acting as a hazardous compound to induce multiple detrimental effects 
in Drosophila melanogaster 

[120] 

2017 Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide 
and formulated product in somatic cells of Drosophila melanogaster 

[121] 

2017 Azadirachtin impact on mate choice, female sexual receptivity and male activity in 
Drosophila melanogaster (Diptera: Drosophilidae) 

[122] 

2017 Changes in neuronal signaling and cell stress response pathways are associated 
with a multigenic response of Drosophila melanogaster to DDT selection 

[123] 

2017 Monitoring the effects of a lepidopteran insecticide, flubendiamide, on the biology of 
a non-target dipteran insect, Drosophila melanogaster 

[124] 

2016 Atrazine exposure affects longevity, development time and body size in Drosophila 
melanogaster 

[125] 

2015 Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in 
Drosophila S2 cells 

[126] 

2015 Study of the changes in life cycle parameters of Drosophila melanogaster exposed 
to fluorinated insecticide, cryolite 

[127] 

2014 Genotoxicity of dichlorvos in strains of Drosophila melanogaster defective in DNA 
repair 

[128] 

2014 Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect 
model Drosophila melanogaster 

[129] 

2014 Assessment of toxicity and potential risk of butene-fipronil using Drosophila 
melanogaster, in comparison to nine conventional insecticides 

[130] 

2014 Growth inhibition and differences in protein profiles in azadirachtin-treated 
Drosophila melanogaster larvae 

[131] 

2014 Azadirachtin blocks the calcium channel and modulates the cholinergic miniature 
synaptic current in the central nervous system of Drosophila 

[132] 
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2013 Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress 
and mitochondrial dysfunction 

[133] 

2013 Paraquat-induced ultrastructural changes and DNA damage in the nervous system 
is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster 

[134] 

2011 Evaluation of toxicity and genotoxic effects of spinosad and deltamethrin in 
Drosophila melanogaster and Bactrocera oleae 

[135] 

2006 Evaluation of volatile low molecular weight insecticides using Drosophila 
melanogaster as a model 

[136] 

2005 Comparative toxic potential of market formulation of two organophosphate 
pesticides in transgenic Drosophila melanogaster (hsp70-lacZ) 

[137] 

2004 Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using 
the alkaline comet assay 

[138] 

 
Considering the pros and cons of alternative approaches to address functional and mechanistic aspects 

in biology, Drosophila melanogaster emerges as a powerful tool for the studies of human diseases and 
metabolism changes [27,139-143] induced by the effects of toxic agents as xenobiotics and pesticides [144]. 
This observation is pointed because most genes and metabolic pathways involved in liver diseases find their 
orthologs in Drosophila (~75% pathogenic-related human genes find their orthologs in fruit flies [27,145-149), 
despite the small complexity of the animal’s genome, when compared to human [27]. In addition, the insect 
has a short life cycle and low maintenance cost [81,82]. In ~ 12 days a single mating pair generates dozens 
of offspring, which are useful to investigate developmental processes studies in larvae and adults. Moreover, 
adult flies have structures equivalent to mammalian organs, which are also useful for the study of different 
and human diseases as cardiac and neurological problems, renal and gastrointestinal diseases, metabolic 
diseases as diabetes and obesity and even cancer [148,149], among others. Thus, considering the 
metabolism, flies can be a useful biotechnological tool [145,146] for the study of toxicants induction of NAFLD. 

Although the mammalian liver equivalent is not found in Drosophila, the fatty body (FB) performs liver 
functions [150], along with the action of oenocytes [151,152]. In Drosophilas the FB is a tissue that controls 
energy stocks in insects at all stages of development. Moreover, as a parallelism between human liver 
metabolism and the correlated insect metabolism, the presence of a powerful detoxification system in FB and 
oenocytes are present [153]. Further, parallel signaling pathways control lipid and sugar metabolism in 
response to the environment both in mammals and Drosophila [154]; Sanguesa and coauthors [155]. This is 
reinforced by the observation that in Drosophila, some classes of mammalian-like hormones are found, such 
as insulin-like peptides (ILPs), which are involved in the homeostasis of the energy metabolism of insects 
[156]. This group of molecules has amino acid sequences like human insulin and performs analogous 
functions in flies [156-158], controlling glucose and energetic metabolism as in mammals. More research 
should be done taking flies as an alternative approach in predictive toxicology to elucidate molecular 
mechanisms induced by the pesticides in human and animals’ physiology, which can support the 
development of the effects of pesticides on fatty liver disease establishment and progression.  

CONCLUSIONS 

In recent decades, the uncontrolled use of pesticides has contributed to increasing rates of environmental 
contamination and deleterious effects to animal and human health. Thus, it is urgent to establish a rationale 
way to use pesticides in agriculture, for the safety of the economy and the quality of life of the environment 
and its habitants. Statistical analyses of regulatory agencies have demonstrated exacerbated consumption 
of phytosanitary products in some countries, while others have tried to strictly control pesticide use, by 
prohibiting their irresponsible commercialization. The world must achieve a correct protocol to educate the 
pesticide consumer to safeguard many countries’ economies and the health of the planet.  

As discussed above, pesticides may act on non-target organisms, considering their accumulation in the 
environment, which affects many cellular and molecular routes, breaking down cellular homeostasis. In 
humans, a sequence of metabolic changes and disruption of physiological routes are observed, contributing 
to the onset of NAFLD and reinforcing the toxicity of the environmental contaminants. In addition, the 
development of alternative protocols to safety evaluates the real toxicity of phytosanitary compounds, 
including a better description of the deleterious pathways, which may lead to liver pathologies, will be very 
useful to science and health. Thus, the alternative animal model, Drosophila melanogaster, represents a 
powerful and interesting biotechnological, which is a useful tool to systemically investigate the real toxic 
effects of several pesticides on the establishment and progression of fatty liver in the modern world.  
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