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Abstract:

The Brazilian Pantanal biome, known for its rich biodiversity and wetlands, is experiencing frequent and destructive 
fires. Detecting and monitoring burnt areas is vital for comprehending their present ecological condition, a key 
indicator for climate change and protective measures. Optical remote sensing methods, traditionally used in fire 
mapping, have limitations due to atmospheric conditions. Microwave Synthetic Aperture Radar (SAR) is a promising 
alternative, excelling in challenging environments and demonstrating sensitivity to surface properties. This study 
aimed to assesses the potential of SAR images for detecting burnt areas in a conservation unit inserted in the 
Brazilian Pantanal after intense fires in 2020. For this, the Normalized Burn Ratio (NBR) index was calculated from 
Sentinel-2 images before and after fire, and then the difference between these images (dNBR). Differences in 
backscatter coefficients of pre- and post-fire SAR/Sentinel-1 images in the two polarizations (dVH and dVV) were 
also calculated. To detect burnt areas, the three differences were classified using the Random Forest algorithm. The 
results showed adequate coincidence of burned areas between dVH and dVV compared to dNBR and high accuracy 
values of the algorithm model, indicating consistency between SAR and optical data in identifying burnt areas.
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1. Introduction

The Pantanal biome is one of the richest and most important regions in Brazil and South America in terms 
of biodiversity and ecosystems. It is recognized as one of the largest wetlands in the world and covers an area of 
approximately 150,000 km², extending across parts of Brazil, Bolivia, and Paraguay. Most of the Pantanal is located 
in western Brazil, in the states of Mato Grosso and Mato Grosso do Sul (WWF, 2023).

The Pantanal is known for its rich biological diversity, harboring a wide variety of fauna and flora species. 
Furthermore, the biome can store water during the rainy season and gradually releasing it during the dry season. 
This process of hydrological regulation is essential for the maintenance of local ecosystems and for the water 
supply to other regions. However, the Pantanal biome has been facing one of the biggest water crises in its recent 
history. With scarcer rainfall, the dry season has extended throughout the year and the fire occurrence has become 
increasingly frequent and devastating in the biome, putting its biodiversity at risk (WWF-Brasil, 2020).

The Brazilian program Queimadas, developed by the National Institute for Space Research (Instituto Nacional 
de Pesquisas Espaciais, INPE) with the primary purpose of monitoring burnt areas and active fires, using remote 
sensing technology and satellites, estimated that 40,606 km2 of the Brazilian Pantanal region was affected by 
fires only from January to October 2020 (INPE, 2020). More than 20% of the entire extension of the Pantanal was 
consumed by fires, showing an increase of approximately four times greater compared to the entire previous year 
(Libonati et al., 2020). The Queimadas program also shows that, of the 742,977 hotspots that occurred in the biome 
throughout 2020, 89% were from June 20 to November 22.

Conservation units represent the best strategy for protecting the world’s natural heritage, as they safeguard 
the fauna and flora, as well as the processes that govern ecosystems, ensuring the maintenance of biodiversity, 
in addition to protecting native populations (Arruda, 1999). Federal and state conservation units inserted in the 
Pantanal aroused concern during the period of intense fires of 2020 as they were seriously affected. Among the 
conservation units, the Encontro das Águas State Park (EASP) inserted in the Pantanal of Mato-Grosso, Brazil, was 
one of the most affected, where a large part of its extension was consumed by fire, threatening the preservation of 
its flora and fauna.

In this sense, the detection and monitoring of burnt areas in the Pantanal of Mato-Grosso is of unique 
importance for the preservation of its biodiversity. Historically, optical remote sensing has enabled efficient 
detection and mapping of burnt areas (Elhag et al. 2020) and, increasingly, access fire severity through the pre- and 
post-fire difference of the Normalized Burn Ratio (dNBR) spectral index (Delcourt et al., 2021; Bright et al., 2019). 
However, the acquisition of optical data used to calculate the NBR index is subject to favorable meteorological 
conditions. Therefore, sensors operating in the microwave spectrum, specifically orbital Synthetic Aperture Radar 
(SAR) systems, become attractive in the monitoring of burnt areas, due to the minimal interference caused by 
clouds and smoke, allowing the acquisition of data independent of the atmospheric condition and solar radiation 
(Zhou et al., 2019; Tariq et al., 2021; Ban et al. 2020; Radman et al., 2023). 

Different characteristics of the earth’s surface features can be discriminated in SAR images. According to Jensen 
(2009), the information extracted from SAR images is formed mainly by sensor parameters, such as wavelength, 
wave polarization, spatial resolution and sensor imaging geometry, and parameters related to objects in the scene, 
such as topography, surface roughness, geometry of the object, object orientation and dielectric constant (directly 
related to soil moisture). Gibson et al. (2023), show that radar sensors are sensitive to variations in the backscattered 
signal, mainly caused by changes in surface roughness and soil moisture content due to the occurrence of fires. 
Therefore, the use of SAR images is of paramount importance for the detection and characterization of burnt areas, 
as it overcomes limitations imposed by adverse atmospheric conditions faced by optical data and provides detailed 
information on the extent and impact of forest fires.
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The purpose of this study was therefore to map burnt areas in the EASP conservation unit in the dry season 
of 2020 based on the classification of SAR images from Sentinel-1 and compare the results with the product 
obtained from the classification of the pre- and post-fire difference of Sentinel-2 optical images derived from the 
NBR spectral index. 

2. Materials and Methods

2.1 Study Area

The study was carried out at EASP, a Brazilian integral protection conservation unit under the responsibility of 
the Department of the Environment of the state of Mato Grosso (Secretaria de Meio Ambiente, SEMA). This region 
is the catchment basin for several significant rivers, including the Cuiabá, Piquiri, Pirigara, Cassange, Três Irmãos, and 
Alegre River (CNUC, 2023). Established in 2004 through Decree Nº. 4,881 on December 22, the park encompasses 
an approximate area of 108,128.69 hectares and is situated within the Pantanal biome in the southern region of 
the state, as illustrated in Figure 1. This Figure displays, additionally, the EASP in true-color composite of Sentinel-2 
optical images obtained before (June 20, 2020) and after (November 22, 2020) a period of intense wildfires in 
2020. EASP was the conservation unit most affected by fire in the state of Mato-Grosso in the dry season of 2020, 
devastating the equivalent of 83% of its territory until October (Libonati et al., 2020). The focus of this study was on 
fire events that took place between June 20 and November 22, 2020. Data sourced from the Queimadas program 
(INPE, 2020) revealed that the study area experienced a significant impact from fires during this time, with a total of 
49,310 hotspots identified through satellite detection. These hotspots can be accessed via the program’s database, 
available at the https://queimadas.dgi.inpe.br/queimadas/bdqueimadas portal.

Figure 1: Location map of the study area (EASP). Left and center maps illustrate true color composite images 
(R4G3B2/Sentinel-2) of the park before (June 20, 2020) and after the fire (November 22, 2020), respectively. 

3 Aline Barroca Marra et al.

Boletim de Ciências Geodésicas, 30: e2024005, 2024

https://queimadas.dgi.inpe.br/queimadas/bdqueimadas portal


2.2 Methodology overview

To evaluate the potential of SAR data in detecting burnt areas, some steps were followed. SAR and optical 
data were acquired before and after an intense period of burning in the defined study area. From the optical data, 
the NBR index and the dNBR from pre- and post-fire NBR images were calculated. The backscattering coefficients of 
the pre- and post-fire SAR images were obtained for each of the polarizations (VV and VH) and the pre- and post-fire 
differences were calculated, generating the difference-images in the two polarizations: dVV and dVH.  The Random 
Forest (RF) machine learning algorithm was used to perform the individual classifications of each three differences 
(dNBR, dVV and dVH) in order to detect and compare the distribution of burnt areas between optical and SAR data 
(qualitative and quantitative comparison of classifications between dVH-dNBR and dVV-dNBR, individually). The 
general flowchart of the methodology can be seen in Figure 2.

Figure 2: Overall flowchart of methodology, where NBRpre and NBRpost refer to the Normalized Burn Ratio optical 
index pre- and post-fire, respectively, dNBR refers to the difference between pre- and post-fire NBRs, and dVH and 

dVV to the pre- and post-fire difference of SAR backscatter coefficients.

2.3 Optical and SAR data acquisition and processing

2.3.1 MSI/Sentinel-2

Copernicus Sentinel-2 is a multispectral imaging mission aiming to monitor variability in Earth’s surface 
conditions with an orbital range of 290 km. The mission comprises a constellation of two satellites, Sentinel-2A and 
Sentinel-2B, in sun-synchronous polar orbit, divided 180° apart. Each Sentinel-2 satellite has revisit frequency of 10 
days and the combined constellation frequency is 5 days. Sentinel-2A was launched on June 23, 2015, and Sentinel-
2B on March 7, 2017, and are equipped with the MSI (MultiSpectral Instrument) sensor instrument, which provides 
higher spatial and spectral resolution optical images (ESA, 2023).
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Sentinel-2 has 12-bit radiometric resolution and 13 spectral bands in three different spatial resolutions. The 
visible and near infrared (NIR) spectral bands have a spatial resolution of 10 meters, the red edge and short-wave 
infrared are 20 m bands and aerosol, water vapor and cirrus, 60 m. The images are available to users at different 
correction levels, but in this study Level-2A in atmospherically corrected Bottom Of Atmosphere (BOA) reflectance 
in cartographic geometry were used (ESA, 2023).

The optical images acquired on June 20 and November 22, 2020, pre- and post-fire, respectively, were 
resampled to 20 meters by nearest neighbor interpolation and clipped by the boundaries of the study area (EASP). 
All optical images were pre-processed together, however, only the spectral bands NIR (10 m) and SWIR (20 m) were 
effectively used.

The pre- and post-fire NBR optical index was calculated in order to discriminate burnt areas. The NBR was 
developed by Key and Benson (1999) and its formulation combines the use of both NIR and SWIR wavelengths 
(Table 1) resulting in values typically ranging from -1 to +1. Negative NBR values indicate areas that have been 
burned and positive values represent unburnt or less severely burnt areas. The magnitude of the negative NBR 
values is correlated with the severity of the burn, with more negative values indicating more extensive burn 
damage. This optical index, as highlighted in studies by Morante-Carballo et al. (2022) and Santos et al. (2023), 
is widely employed in environmental and ecological research for assessing the impact of fires on vegetation and 
ecosystems. It plays a crucial role in fire management and landscape monitoring by identifying the affected area’s 
extent and facilitating post-fire recovery analysis. 

Table 1: Formulations of the NBR optical spectral index and dNBR, where NIR refers to the Near-InfraRed 
wavelength and SWIR-1 to the Short-Wave InfraRed-1 from the Sentinel-2 sensor.

Acronym Formulation Reference

NBR
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌SWIR1
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌SWIR1

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,post

0

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0

Key and Benson (1999)

dNBR

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌SWIR1
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌SWIR1

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,post

0

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0

Key and Benson (2006)

After calculating the NBR, the dNBR, developed by Key and Benson (2006), was calculated by taking the 
difference between NBR values from pre- and post-fire images (June 20 and November 22, 2020, respectively) 
(Table 1). The dNBR is an extension of the NBR index and provides additional information to better characterize the 
size and severity of the burn, particularly in the context of wildfire monitoring and post-fire analysis. Therefore, the 
dNBR was used as ground truth for collecting samples to be applied in the classification. 

Key and Benson (2006) used dNBR to characterize fire severity, based on TM and ETM+/Landsat images, and 
found that higher positive dNBR values indicate areas of higher burn severity, while lower or negative dNBR values 
suggest less severe or unburnt areas. Therefore, the histogram of the distribution of the digital numbers of the dNBR 
pixels was calculated. The histogram shows the statistical frequency of pixel values distribution in image, allowing to 
verify the extension of pixels attributed to different levels of fire severity.

2.3.2 SAR/Sentinel-1

SAR images are the result of the backscattering process of an electromagnetic wave transmitted with a vertical 
(V) or horizontal (H) polarization. SAR systems can operate in both co-polarization and cross-polarization modes. The 
co-polarization mode occurs when the sensor antenna transmits and receives energy in the same polarization, i.e., 
the antenna transmits energy horizontally and receives horizontally (HH) or transmits and receives vertically (VV). In 
cross polarization mode, the antenna transmits and receives in different polarizations (VH or HV). The backscatter 
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coefficient, also known as sigma nought (σ°), is an essential parameter determined by the value of backscatter in 
relation to the amount of energy emitted by the microwave sensor. The power received by the radar antenna is 
influenced by the characteristics of the radar system, such as wavelength, wave polarization, spatial resolution, and 
sensor imaging geometry, as well as the characteristics of the object being imaged, such as electrical components 
(dielectric constant/ water content), roughness and geometry (Lillesand et al., 2015).

Surface roughness is an important characteristic of backscattered signal intensity and is directly related to the 
sensor wavelength. Small fluctuations in the roughness of the surface imaged by the radar affect the signal in bands 
with short wavelengths (X band, from 7.9 to 12.5 GHz, for example) more than in bands with longer wavelengths 
(L band, from 1.0 to 2.0 GHz, for example). The dielectric constant of the materials present on the surface also 
significantly influences the backscattering of the radar signal. The dielectric constant measures the ability of 
different materials (vegetation, soil, rock, water, ice, etc.) to conduct electrical energy. The dielectric constant has 
direct proportionality in relation to the amount of moisture in the soil. Thus, the greater the dielectric constant of 
the material, the greater the interaction of the electric field of the incident energy with the water and the stronger 
the signal return (Jensen, 2009).

The Sentinel-1 mission comprises a constellation of two satellites, Sentinel-1A and Sentinel-1B, launched on 
April 3, 2014, and April 25, 2016, consecutively, however, only Sentinel-1A is currently in operation. The satellites 
have a near-polar, sun-synchronous orbit with a 12-day repeating cycle. Sentinel-1 satellites incorporate a SAR 
instrument that operates in the C band at a frequency of 5.404 GHz. Interferometric Wide Swath Mode (IW) is 
the main mode for acquiring data on the Earth’s surface with VV+VH polarization. IW mode acquires images in 
three sub-swaths using the Terrain Observation with Progressive Scans SAR (TOPSAR) imaging technique, avoiding 
clipping, and resulting in homogeneous image quality across the entire range. Data are acquired over a 250 km 
swath with a spatial resolution of 5 m by 20 m. SAR images can be provided in “complex” format, known as Single 
Look Complex (SLC), and Ground Range Detected (GRD), which consists of detected, multi-looked, and ellipsoid 
projected SAR data (ESA, 2023).

One of the main advantages of SAR imaging is the ability to operate independently of solar radiation, and 
low interference from clouds, smoke, and fog, among other meteorological conditions. This is especially important 
in wildfire scenarios, where the presence of clouds and smoke can obscure images from optical sensors, making it 
difficult to detect and assess affected areas (Lillesand et al., 2015). SAR images also offer valuable insights into the 
vegetation structure of burnt areas, enabling the identification of distinct patterns associated with recently affected 
regions. These patterns arise from changes in texture, roughness, and soil water content following a fire event. As a 
result, SAR analysis allows for an accurate assessment of the fire’s impact on the local ecosystem. Zhou et al. (2019) 
show that, the backscattering process in vegetation before a fire, is mainly dominated by the volume scattering 
from the vegetation’s canopy layer. However, following a fire, when part of the ground becomes exposed due to the 
burning of vegetation, the dominant mechanism shifts to surface scattering. This surface scattering is predominantly 
influenced by the roughness and moisture content of the soil. 

In this sense, the use of SAR images has proven to be a valuable tool in detecting and monitoring burnt areas. 
The studies conducted by Mastro et al. (2022) and Tariq et al. (2021) affirm that C-band backscatter coefficients 
are highly effective in detecting fire disturbances. This efficiency stems from their sensitivity to changes in the 
vegetation structure, which is affected by the fire impact. SAR images is also significantly impacted by variations 
in soil and vegetation moisture. This influence is particularly pronounced in areas that have experienced severe 
burning, where the ground surface is exposed (Gibson et al., 2023).

For this study, images taken before and after the burning period, June 15, and November 24, 2020, respectively, 
were selected. The images were acquired from the Sentinel-1A satellite (C band), in SLC format and IW mode. To 
obtain the sigma nought backscatter coefficients in the VV and VH polarizations (𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎  e 𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎 ) the following pre-
processing were carried out: image split, defining only one sub-swath (IW2) and 4 bursts (5 to 8); orbit correction; 
removal of thermal noise; data calibration; deburst; multilooking with 4x1 looks (distance x azimuth); application 
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of the Refined Lee filter with a 3 x 3 window; and finally, terrain correction was performed based on the data 
from the Shuttle Radar Topography Mission (SRTM), where the image pixels were also resampled to 20m, to grant 
consistency with Sentinel-2 data (Figure 3). The data pre-processing, both optical and SAR images, was performed 
using the Sentinel Application Platform 8.0 (SNAP) software, developed by the ESA (European Space Agency).

Figure 3: SAR/Sentinel-1 pre-processing workflow.

After pre-processing the SAR images, the pre- and post-fire backscatter coefficients in both polarizations 
(𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎  e 𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎 ) were subtracted, expressed by dVV and dVH (Table 2). The pre- and post-fire differences of both 
backscatter coefficients of the SAR images were also calculated in order to highlight burnt surfaces in the study area 
and compare qualitatively and quantitatively with the result obtained through the dNBR optical measurement.

Table 2: Formulations of the SAR data differences used in this study, where 𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎  and 𝝈𝝈𝑽𝑽𝑽𝑽𝟎𝟎  refer to the VV and VH 
backscatter coefficients from the Sentinel-1 sensor and the pre and post indices to the images taken before and after 

the burning period, respectively. 

Acronym Formulation
dVV

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌SWIR1
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌SWIR1

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,post

0

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0dVH

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌SWIR1
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌SWIR1

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,post

0

𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝
0 − 𝜎𝜎𝑉𝑉𝑉𝑉,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0

2.4 Classification of MSI/Sentinel-2 and SAR/Sentinel-1 data

The classification of remote sensing data is a fundamental technique to detect and monitor burnt areas, 
contributing to the understanding of the extent, intensity and environmental impacts caused by the fire event. 
The RF machine learning algorithm, developed by Breiman (2001), has emerged as a powerful tool that combines 
multiple decision trees, introduces randomness in feature selection and data sampling, reducing overfitting and 
providing more robust predictions. It is widely used in machine learning applications due to its effectiveness and 
ability to deal with a variety of problems. This algorithm plays a significant role in the application of studies aimed 
at accessing the degradation of areas affected by fire due to the construction of a robust and precise predictive 
model, ability to deal with heterogeneous and unbalanced data, in addition to providing a measure of importance 
for each feature presented to the network (Jarocińska et al., 2023). Authors such as Gibson et al. (2020), Pacheco et 
al. (2021), and Li et al. (2023), highlight the importance of RF as an efficient and accurate algorithm for detection, 
mapping, and monitoring applications of burned areas.

For this study, three classifications were performed using the RF algorithm with the aim of detecting burned 
areas in the study area. The input data for the classification were, separately, the difference images dNBR, dVV 
and dVH, considering two output classes: burnt areas and unburnt areas. The dNBR was considered the ground 
truth for the sample collection of the two classes used in the training of the RF algorithm. Furthermore, the sample 
collection was performed based on the visual interpretation of the optical images in true color composite (R4G3B2/
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Sentinel-2), before and after the fire (June 20 and November 22, 2020, respectively), subsidized by information on 
fire outbreaks acquired from the Queimadas program (https://queimadas.dgi.inpe.br/queimadas/bdqueimadas).

The samples were divided so that 70% of the pixels were used in algorithm training and 30% in model 
validation. To evaluate the ability of each difference image (dNBR, dVV and dVH) in detecting burned areas by the 
respective RF models, the Recall, Precision, F1-Score, and accuracy metrics were calculated from the validation 
data. In addition, the results of the classifications of the SAR dVV and dVH products were compared individually 
with the classified dNBR image, allowing to obtain the proportions of coincidences and disagreements between the 
classifications.

3. Results and discussions

3.1 Optical and SAR pre- and post-fire differences 

The dNBR, calculated from the pre- and post-fire (June 20th and November 22nd, respectively) difference of 
the NBR optical spectral index, is shown in Figure 4. Figure 4 also shows the frequency histogram of the dNBR pixels 
and the NBRs generated for its calculation. Regarding the SAR data, Figure 5 shows the dVH and dVV differences 
(Figure 5 a and b, respectively), their respective histograms, and pre- and post-fire backscatter coefficients (June 15 
and November 24, 2020, respectively).

Figure 4: dNBR image used as ground truth, where areas in lighter shades of gray represent the highest degrees 
of burn severity and its frequency histogram. The pre- and post-fire NBRs (June 20 and November 22, 2020, 

respectively), used to calculate the dNBR, are shown on the right.

Since burnt areas in the NBR spectral index result in darker shades of gray after the occurrence of fire in 
relation to pre-fire NBR, it is understood that the areas that suffered from the action of fire respond in a lighter tone 
in dNBR, enhancing the detection of burnt areas, as can be seen in Figure 4. The histogram calculated for dNBR in 
this study shows a large variance, mainly at values above 0.1. In addition, there was a predominance of lighter gray 
values, above 0.1. A similar behavior, with lighter gray levels indicating burned areas, can be observed for the SAR 
dVV and dVH differences, in which the burnt areas also show lighter shades of gray (Figure 5 a and b).
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All generated histograms (Figures 4 and 5), present maximum values slightly displaced from zero, each 
one at a different magnitude. The dNBR presented a greater number of gray level values close to the maximum 
frequency value of the histogram, unlike the histograms generated from the SAR differences, with a frequency 
peak concentrated in a few gray level values. This indicates that the burnt areas present in the SAR dVV and dVH 
differences are presented in a smaller variation of gray levels in relation to the dNBR optical product. From the 
dNBR (Figure 4), it was also observed the presence of water bodies with values around 0.4, close to the peak of the 
gray level values of the image pixels, which are associated with burnt areas. On the other hand, the dVH and dVV 
products had greater sensitivity in relation to water bodies, representing them with low brightness. This occurs due 
to the specular reflection of radar pulses generally suffered by bodies of water, which causes these areas to present 
dark levels of gray in the image (Jensen, 2009).

Figure 5: Difference between the backscatter coefficients of the SAR/Sentinel-1 images dVH in a) and dVV in b), 
accompanied by their respective frequency histograms. The pre- and post-fire backscatter coefficients (June 15 

and November 24, 2020, respectively) are shown on the right side, used to calculate both differences.
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3.2 Burnt area classifications based on optical and SAR differences images 

The spatial distribution of burnt and unburnt areas based on the dNBR, dVH and dVV classifications are 
shown in Figure 6 a, b, and c, respectively, where areas in red represent burnt areas and in green, unburnt areas.

Figure 6: Classification of the differences a) dNBR, b) dVH and c) dVV, where areas in red represent burnt areas and 
in green, unburnt areas.

Based on the findings from the data classification, the dNBR indicated 42% of the total area as burnt, whereas 
the dVH and dVV SAR differences showed a larger proportion classified as burnt, 55% and 52%, respectively (Figure 
6). The collection of samples used in the classifications from burnt areas was directed to the lighter gray tones that 
indicate greater severity of burns. Therefore, the SAR dVH and dVV differences may have detected more burnt areas 
in relation to the dNBR, due to the defining characteristics of the backscatter of the radar signal, such as water content 
and surface roughness, which might be more sensitive to lower levels of burn severity compared to optical images.

Regarding the classification’s performance, Table 3 shows the Recall, Precision, F1-Score, and Accuracy metrics, 
resulting from the application of RF models in dNBR, dVH and dVV models on the 30% of the validation data. 

Table 3: Performance of RF models in detecting burnt areas in dNBR, dVH and dVV images, expressed by Recall, 
Precision, F1-Score and Accuracy metrics.

dNBR dVH dVV
Kappa 1.000 0.920 0.880

GA 1.000 0.960 0.940
Recall 1.000 0.972 0.942

Precision 0.998 0.946 0.928
F1-Score 0.999 0.959 0.935
Accuracy 0.999 0.962 0.940
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The results estimated from the 30% of validation data indicated in Table 3 show that dNBR reached maximum 
values for Kappa coefficient, GA, and Recall (1.000) and presented values above 0.99 for the other metrics. All 
metrics calculated for dVH indicated subtly better results in relation to the dVV difference, with a 0.04 difference 
comparing the Kappa coefficient and 0.03 the Recall. The remaining metrics showed differences around 0.02. The 
maximum difference between dNBR and dVH results, which achieved the best performance among SAR data, was 
0.08 for the kappa coefficient. These results indicate the consistency in the detection of burned areas by the SAR 
data, since the generated SAR models were able to efficiently learn and generalize the information of the samples 
collected from optical data.

3.3 Optical and SAR classifications comparison 

Furthermore, the classifications generated for the dVH and dVV SAR differences were individually compared 
with the classification of the dNBR optical difference, with the objective of analyzing the coincidence of burnt areas 
of the SAR differences in relation to the optical difference. The results are shown in Figure 7.

Figure 7: Thematic maps resulting from the individual comparison between the classification of a) dNBR with dVH 
and b) dNBR with dVV. The blue color represents unburnt areas in dVH and dVV and burnt in dNBR, the magenta 

color, areas burnt in dVH and dVV and unburnt in dNBR, and the white, coincident areas.

Comparing the dVH and dVV classifications individually with the dNBR classification, the results showed 
similar percentages of area coincidence (white areas), being 70% between dVH and dNBR (Figure 7 a), and 73% 
between dVV and dNBR (Figure 7 b). The results also showed that the dVH and dVV products identified more burnt 
areas compared to dNBR, 21% and 18%, respectively, illustrated in magenta. The areas classified as unburnt in the 
SAR differences and burned in the dNBR difference were only 9%, in both cases.
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The obtained results indicate that SAR data, especially differences between pre- and post-fire backscatter 
coefficients that allow highlighting burnt areas, are sensitive to different levels of fire severity, even the samples 
used in the classification having been collected generally from more prominent areas in the dNBR. Gibson et al. 
(2023) states that the ability of C-band SAR to detect burnt areas and assess fire severity relies on its sensitivity to 
structural changes since the direct influence of removing leaves and twigs in the canopy was observed in the C-band 
backscattering response.

4. Conclusions

Forest fires pose a serious threat, especially to the Brazilian Pantanal biome which plays an essential role in 
providing vital ecosystem services for Brazil and the world, harboring a unique biological diversity, and regulating 
hydrological and climate cycles. The occurrence of fire, mainly in protected areas, constitutes one of the most 
important sources of alteration and destruction of flora and fauna. Monitoring fires on natural vegetation in the 
Pantanal biome, is of unique importance for the preservation of the biome’s biodiversity. Ensuring the preservation 
of the Pantanal biome and its diverse functions requires the adoption of efficient fire management strategies and 
remote sensing techniques have already proven to be efficient in providing information about the extent and effects 
caused by fires.

The results of this study showed that the dVH and dVV SAR products overestimated the burnt areas in relation 
to the dNBR optical image, however, the SAR data indicated consistency in relation to the optical data, showing 
a high coincidence of areas classified as burnt and distribution spatially coincident. In addition, it is important to 
highlight that the dVH and dVV products were able to differentiate water bodies, not associating them with burnt 
areas, as occurred with dNBR.

Due to the interference of several factors related to the targets on the ground and the sensor system in the 
radar response, such as the wavelength in which the sensor operates and surface roughness; wave polarization; 
spatial resolution; target dielectric constant; among others, the interpretation of SAR data becomes quite complex 
and not very intuitive. However, the possibility of acquiring data in near real time allows the monitoring and accurate 
detection of active fire and its spread when complemented by optical data in adverse atmospheric conditions. The 
integration of these data with other sources of information is essential to support monitoring actions and decision-
making related to the management and conservation of ecosystems affected by fire.

Finally, some additional studies are suggested, such as the evaluation of other polarimetric features and 
algorithms based on deep learning for the detection of burnt areas. Additionally, the analysis of time series of SAR 
data, together with optical features, constitutes a promising approach for monitoring the regeneration of burnt areas.
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