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Abstract
Several discussions have arisen about energy from hydroelectric plants being considered clean energy and its 
reservoirs have been investigated due to the large emission of greenhouse gases (GHG), such as carbon dioxide, 
methane, and nitrous oxide. The present work shows a statistical study of the diffusive CO2 emissions before the 
formation of the reservoir of the hydroelectric power plant (HPP) of SINOP, Brazil. The association between emissions 
collected at the surface (water-air) and at the bottom of the reservoir (sediment-water) was investigated during 
four data collection campaigns, carried out from November 2017 to September 2018. This study aims to compare 
the effect of reservoir depth on the diffusive flow of CO2 at 34 collection points. The variable depth analyzed 
was defined from points collected on the surface and bottom of the reservoir. The objective is to detect whether 
different periods of time and whether the depth of the reservoir have a direct impact on the behavior of diffusive 
CO2 emissions. As the measurements of the observational unit are repeatedly observed, there is a multilevel 
structure, individuals are independent of each other, but there is an intra-individual correlation. Considering 
this data configuration, an estimation of generalized equations (GEE) was performed, which is a technique that 
estimates the intra-individual correlation matrix and thus produces estimates for the parameters of the generalized 
regression models (Generalized Regression Models – GLM) that are not biased. The study showed that the average 
diffusive CO2 emissions are higher on the reservoir surface. The study also found that, on average, there are more 
emissions during the rainy season in the region than during the dry season.

Keywords: repeated measures, carbon dioxide, generalized estimation equations, greenhouse gases.

Resumo
Diversas discussões têm surgido a respeito da energia proveniente de usinas hidrelétricas ser considerada uma 
energia limpa e seus reservatórios têm sido investigados devido à grande emissão de gases de efeito estufa (GEE), 
como dióxido de carbono, metano e óxido nitroso. O presente trabalho traz um estudo estatístico das emissões 
difusivas de CO2 antes da formação do reservatório da usina hidrelétrica (UHE) de SINOP, Brasil. Investigou-se 
a associação entre as emissões coletadas na superfície (água-ar) e no fundo do reservatório (sedimento-água) 
durante quatro campanhas de coletas de dados, realizadas no período de novembro de 2017 até setembro de 
2018. Este estudo visa comparar o efeito da profundidade do reservatório no fluxo difusivo de CO2 em 34 pontos 
de coleta. A variável profundidade analisada foi definida a partir de pontos coletados na superfície e no fundo 
do reservatório. O objetivo é detectar se épocas de tempo diferentes e se a profundidade do reservatório tem 
impacto direto no comportamento das emissões difusivas de CO2. Como as medidas da unidade observacional são 
observadas repetidamente, tem-se uma estrutura multinível, os indivíduos são independentes entre si, porém existe 
uma correlação intra-indivíduos. Considerando essa configuração de dados, foi feita uma estimação de equações 
generalizadas (Generalized Estimating Equations – GEE) que é uma técnica que estima a matriz de correlação intra-
indivíduos e assim, produz estimativas para os parâmetros dos modelos de regressão generalizados (Generalized 
Regression Models – GLM) que não sejam enviesadas. O estudo mostrou que as médias das emissões difusivas de 
CO2 são maiores na superfície do reservatório. O estudo também detectou que em média, existem mais emissões 
durante o período de chuva na região do que durante a época da estiagem.

Palavras-chave: medidas repetidas, dióxido de carbono, equações de estimação generalizadas, gases de efeito estufa.
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independent variables, to identify an effect of reservoir 
depth and time on diffusive CO2 emissions. So, it must be 
that the points are the experimental units, the depth of the 
treatment and the campaigns the intra-individual factor.

In this sense, this work aims to apply statistical tools 
that can explain the behavior of diffuse carbon dioxide 
emissions in the Teles Pires river before the formation of 
the UHE SINOP reservoir.

2. Materials and Methods

2.1. Study area

The present study was carried out in the Teles Pires 
River before the construction of the hydroelectric power 
plant (HPP) SINOP reservoir, located in the state of Mato 
Grosso, Brazil. The reservoir has a direct influence on the 
municipalities of Itaúba/MT, Cláudia/MT, Ipiranga do Norte/
MT, Sinop/MT and Sorriso/MT (Figure 1).

This plant has an installed capacity of 408 MW, with a 
powerhouse with two Kaplan-type turbines of 204 MW 
each. The maps generated with the values of each analyzed 
point were generated from the free software QGIS 
(Sherman et al., 2011).

The Teles Pires river basin has an area of approximately 
150,000 km2 and includes part of the territories of Mato 
Grosso and Pará.

The source of the Teles Pires River is in Serra Azul, in 
the municipality of Primavera do Leste, at an altitude of 
800 meters. Its waters bathe two important Brazilian 
biomes: the Cerrado and the Amazon rainforest.

2.2. Diffusive water-air flow

Molecular diffusion is the part of transporting a solute 
in a fluid due solely to the agitation of the molecules that 
make up the fluid (Golbi, 2015). Diffusive flows depend on 
the concentration gradient between the micro surface layer 
and atmospheric and physical parameters such as wind 
speed and rain (Borges et al., 2004; Guérin et al., 2007).

The flow is calculated from the difference in gas 
concentration in ambient air inside a floating chamber on 
the water surface over a period (Abril et al., 2005). This 
flow depends on the difference in concentration in the 
ambient air and on the concentration in the water layer 
close to the surface, as well as on the speed of the winds 
and intensity of precipitation (IHA, 2010).

The diffusive flow of CO2 represents the exchange of a 
chemical species from the diffusive molecular transport 
or turbulent diffusive transport between two phases or 
in the same phase. In the case of hydroelectric reservoirs, 
the flow between two phases is determined: aquatic and 
gaseous (when this flow is measured on aquatic surfaces).

For this study, the flow was measured by means 
of diffusion chambers, a method with greater use in 
international studies. The chamber holds a known volume 
of air trapped on the water surface that can receive gases 
that emanate from the water-air interface or leave this 
headspace for water (Figure 2).

1. Introduction

Hydroelectric plants play a fundamental role in 
supplying electricity in Brazil and around the world 
(Barbosa  et  al., 2018). The Brazilian electricity sector 
has a large base of large hydroelectric plants, 63.8% 
(government of Brasil, 2020), in addition to other sources 
of energy production, and transmission lines of continental 
dimensions, of varying voltage levels and technologies.

Brazilian hydroelectric plants have already been 
investigated for their contribution to the intensification 
of the greenhouse effect. Its reservoirs would be emitting 
greenhouse gas (GHG) such as methane (CH4), carbon 
dioxide (CO2) and nitrous oxide (N2O) that would be 
produced through the decomposition of organic material 
in its accumulation basin (Mercado Burciaga et al., 2019; 
Damazio et al., 2013).

In many practical situations, there is an interest in 
modeling the behavior of one or more response variables 
measured in the units of one or more populations along 
some ordered dimension (Chen et al., 2018). In this study, 
the variable to be modeled is the CO2 concentration along 
the Teles Pires river and the respective diffusive fluxes to 
the atmosphere, collected repeatedly over time.

The expression “repeated measures” is used to specify 
multiple observations of the same characteristic in one or 
more variable responses in the same experimental unit 
(Nobre and Singer, 2007).

Experiments with repeated measures over time involve 
two factors: treatments and time and are frequent in 
several areas of knowledge. The main purpose of this 
type of experiment is to examine and compare treatment 
trends over time. This may involve comparisons between 
treatments within each time, or comparisons of times 
within each treatment. Thus, treatment is the factor 
between individuals (experimental units) and time the 
factor between individuals.

In statistical science, when you have two or more 
observations, made at different times, of the response 
variable in each sample unit under investigation, this 
study is known as a longitudinal study that generates 
longitudinal data.

For many years, normal linear models have been used 
to describe most random phenomena. Even when the 
phenomenon under study did not present an answer 
to which the assumption of normality was reasonable, 
transformation was suggested to achieve normality.

With computational development, Nelder and 
Wedderburn (1972), proposed generalized linear models 
(MLGs). The basic idea was to open the range of options for 
the distribution of the response variable and give greater 
flexibility to the relationship between the average of the 
response variable and the linear predictor.

When the response variable is observed over time, 
there may be a correlation between the observations, and 
this may lead to a violation of independence. One way to 
consider the correlated data is to model the correlation 
structure, using the generalized estimation equation (GEE) 
approach, given by Liang and Zeger (1986).

In this work, a GHG model will be built with carbon 
dioxide as the response variable and depth and campaign 
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2.3. Sediment-water diffusive flow

The sediments were collected with the aid of a Kajak-
Brinkhurst tester, brand UWITEC, Austria, for 60 mm 
internal diameter and 60 cm long PVC crystal tubes, 
coupled to a 5 m long telescopic aluminum rod (Figure 3), 
according to the methods described by Abe et al. (2005) 
and Brasil (2012).

Water samples were collected at 5 and 0.5 cm above 
the sediment-water interface with the aid of a silicone 
tube 3 mm in diameter and 60 cm in length, connected 
to a 20 ml syringe, and transferred to vials glass with 
silicone septum lids for subsequent CO2 analysis (Figure 4) 
(AIIEGA, 2018).

The quantification of CO2 in the layer above the 
sediment-water interface was necessary to calculate the 

diffusive flow of this gas through the sediment-water 
interface.

The carbon dioxide diffusive data from this study were 
collected at 34 georeferenced points on the Teles Pires 
River, in 4 different campaigns. The database was divided 
into two levels of reservoir depth, surface, and bottom, 
of which 25 points were collected on the surface of the 
reservoir and 9 points on the bottom.

2.4. Statistical analysis of the data

Data were collected over 4 campaigns, which ran from 
November 2017 to September 2018. The first campaign 
was carried out in November 2017, which is the flood 
season for the reservoir. The second in February 2018, 
when the reservoir is full. The third in June 2018, which is 

Figure 1. Location of the SINOP hydroelectric reservoir. Source: SINOP Energia (2021).

Figure 2. Diffusion gas collecting chamber showing protective shield against bubbles. Source: COPPE (2018).
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the dry season, and the fourth in September 2018, when 
the reservoir refills.

For the statistical analysis of the data, an exploratory 
analysis of the data was initially performed, calculating 
averages, variances, and extreme values of the response 
variable.

Then, a model was made using the generalized 
estimation equations of Liang and Zeger (1986).

GHG-based models focus directly on the marginal 
distribution of the y data, with specification of only the 
expected value and variance, namely (Equation 1):

( ) ( ) ( )1  ij ij ij ijE y eV yµ φ υ µ−= = 	 (1)

where ijy  is the response variable of interest for the j-th 
individual of the i-th group, υ ( )ijυ µ  is a function of the 

Figure 3. Photographic record of sediment sample collection in the future reservoir of HPP Sinop with the aid of a telescopic manual 
rod coupled to the Kajak-Brinkhurst type witness. Source: AIIEGA (2018).

Figure 4. Photographic record of the quantification of temperature and dissolved oxygen (A) and the collection of water samples (B and 
C) for the quantification of CO2 in the layer above the sediment-water interface in the sediment core collected in the future reservoir 
of UHE Sinop. Source: AIIEGA (2018).
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expected value and ϕ is the dispersion parameter. The 
relationship between the expected response and the 
exploratory variables is specified as Equation 2:

( ) T
ij ijg Xµ β= 	 (2)

where g is the link function.
To incorporate the intra-unit sample covariance 

structure, consider a working covariance matrix defined 
as Equation 3:

( ) ( )1/2 1/2
iW i W iA R Aθ φ θΩ = 	 (3)

where RW(θ) is a positive defined matrix of parameters θ. 
If RW(θ) is the true matrix of intra-unit sample correlations 
of yi, then ( ) ( )iW iV yθΩ = .

Due to the continuous nature of the data, a constant 
was added to make the data positive and thus it was 
possible to adjust a model using the Gamma distribution 
considering the identity link function and the depth (surface 
and bottom) and campaign (1, 2, 3 and 4). Therefore, we 
have that (Equation 4):

1
4k ijXµ β β− = + 	 (4)

where i = 1, ..., 34 refers to the points at which diffusive 
CO2 flows were measured, j = 1, ..., 4 to the campaigns in 
which observations were collected and k = 1, 2 at depth 
(where k = 1 surface and k = 2 bottom).

The model previously described was tested with the 
main covariance matrices to choose the covariance matrix 
that generates the best model for the data.

Pan (2001) proposed a method of selecting a correlation 
structure for GHG since the measures can be correlated. 
This criterion was called quasi-likelihood criterion under 
the independence model (Quasi-Likelihood under the 
Independence Model Criterion - QIC).

The QIC is calculated by comparing a model with a given 
work correlation structure with that generated using the 
independent structure. QIC values can be used to compare 
different correlation structures. The lower the QIC value, 
the better the model.

According to the QIC, the correlation matrix chosen 
was the first order autoregressive, AR (1) (Equation 5). This 
matrix is used when it is assumed that the measures within 
the group have a first-order autoregressive relationship, 
usually when the data are correlated over time. To know,

( ) 1, ,1 , j
ij il iCorr y y j l tθ −= ≤ ≤ 	 (5)

that is, it is assumed that the correlation between two 
instants of time decays exponentially according to the 
distance of the observations.

3. Results

Figure  5 shows the total daily precipitation at the 
Climatological Station of Sinop-MT (INMET) for the period 
between November 2017 and September 2018 with an 
indication of the collection days for the 1st campaign 
(a), 2nd campaign (b), 3rd field campaign (c) and 4th field 
campaign (d), carried out by the AIIEGA team in the future 
reservoir of UHE Sinop.

The rainy season begins most frequently in November 
and usually extends to March, with the rainiest quarter 
occurring most frequently between the months of 
December to March (which may vary from December to 
February or January to March). The dry season frequently 
begins in May and generally extends to September, with 
the peak of the drought in the months of June, July, and 
August. The month of April acts as a transition from the 
rainy to the dry season and the month of October makes the 
transition between the dry and the rainy season (Figure 5).

Figure 5. Total daily rainfall at the Sinop-MT Climatological Station (INMET) for the period between November 2017 and September 
2018. Source: Agritempo (2018).
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An exploratory analysis of the data was carried 
out, and in general, the diffusive CO2 emission was 
2,934.97 mg.m-2.d-1.

The highest value for emissions was 10,112.80 mg.m-2.d-1 as 
well as the highest average 6,030.77 mg.m-2.d-1 was measured 
on the surface of the reservoir in the 2nd campaign, which 
is equivalent to the rainy season in the reservoir. In July 
and September 2018, negative values were measured on 
the surface of the reservoir, which indicates absorption 
of gas by the reservoir (Table 1).

The values for the measurements of the diffusive flow 
of CO2 seem more variable on the surface of the reservoir 
throughout the campaigns, while in the end the emissions 
seem to have a more similar behavior. This behavior can 
be seen in the scatter plot in Figure 6.

To have a general illustration of each depth level of 
the reservoir, the graph of Figure  7 shows the average 
diffusive emission of CO2 for the surface and bottom, and 
the variation of the average emission interval of each level 
and its evolution over the four campaigns.

The average profile per campaign, defined as the 
average diffusive CO2 emission per campaign by depth, 
shows a growth from campaign 1 to campaign 2 both on 
the surface and at the bottom, then shows a decay from 
campaign 2 to 3 and to surface, there is a slight growth 
from campaign 3 to campaign 4.

Through Wald’s chi-square test (Table 2), it is noted 
that the data have a p-value well below 0.01, that is, there 
is an effect of depth and of the campaign on diffusive 
CO2 emissions, that is, there is an influence of when 
emissions were collected and whether they were collected 
on the surface or bottom of the reservoir.

This means that emissions are different when measured 
on the surface and bottom of the reservoir, and that they 
also vary over time.

It is also possible to see that there is an effect of the 
interaction (depth x campaign), this result shows that 
during the campaigns there is a change in the average 
behavior of diffusive CO2 emissions between the levels 
of the reservoir.

Table 1. Descriptive statistics of CO2 diffusive flow measurements by campaign and depth.

Campaign Depth Minimum Maximum Average Median
Standard 
Deviation

Nov/2017 Bottom 565.51 2,275.75 1,170.65 1,062.03 545.15

Surface 577.21 8,549.25 3,760.98 3,422.21 2,402.62

Feb/2018 Bottom 530.88 4,146.25 1,868.67 1,980.34 1,142.96

Surface 1,766.10 10,112.80 6,030.77 6,465.50 2,392.23

Jun/2018 Bottom 530.61 3,719.55 1,501.85 1,063.31 1,009.34

Surface -1,447.10 6,757.50 1,892.16 1,932.65 2,115.64

Sep/2018 Bottom 484.02 3,971.52 1,310.38 978.21 1,081.99

Surface -3,025.10 6,213.70 2,096.55 1,862.70 1,963.55

Source: Own elaboration.

Figure 6. Scatter plot for diffusive CO2 emissions per campaign separated by depth. Source: Own elaboration.
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Table  3 shows the results of the average diffusive 
CO2 emissions, the standard error, and the confidence 
intervals for each level of the reservoir in each campaign.

Note that the averages of CO2 diffusive emissions 
on the reservoir surface are higher in campaigns 1 and 
2 than in campaigns 3 and 4, as well as higher than the 
averages observed at the bottom of the reservoir for all 
campaigns. For the bottom of the reservoir, the averages of 
the diffusive emissions of carbon dioxide are very similar 
between the campaigns.

One of the most important steps in any modeling 
process is the diagnostic analysis, through which possible 
deviations from the assumptions made by the model are 
verified, in addition to allowing to find possible extreme 
observations that disproportionately interfere with the 
results of the adjustment.

The diagnostic analysis started with the analysis of residues 
to verify possible observations that present a great distance 
from the others (outliers), a point that exert a disproportionate 
weight in the estimates of the model parameters (influential 
observations) or to evaluate the adequacy of the distribution 
proposed for the response variable.

The method of local influence proposed by Cook (1986) 
consists of verifying, through an appropriate measure of 
influence, the robustness of the estimates provided by 
the model in the face of the effect of small disturbances 
in the model itself or data.

Figure 8 shows the graph of Cook’s distance indices for 
the model adjusted to the diffusive CO2 emissions data.

By Figure 8, it is possible to notice that there are some 
observations that are more distant from the majority, but 
do not present great highlights, therefore, there are no 
observations causing disturbances in the model.

To prove the adequacy of the adjusted model, the 
Shapiro-Wilk normality test was performed with the 
residues of the model. The p-value of the test was 0.225, 
which accepts the null hypothesis that the data follow 
a normal distribution. Figure  9 shows the Q-Qplot of 
the residues and the data are all close to the line, which 
proves normality.

4. Discussion

Through a complementary test, it is possible to assess 
where the change in the average behavior of diffuse carbon 
dioxide emissions occurs. The post-hoc test performed 
was the Bonferroni test, this test makes peer-to-peer 
comparisons between the campaigns and the depth to 
detect where the effect found in the test in Table 2 exists 
and thus decrease the chance of type I error.

Table 2. Results of the test of the main effects and of the interaction 
by Wald’s chi-square.

Wald’s 
chi-square

Degrees of 
freedom

p-Value 
(Wald)

(Intercept) 1,630.64 1 0.00

Depth 45.98 1 0.00

Campaign 46.67 3 0.00

Depth * 
Campaign

32.91 3 0.00

Source: Own elaboration.
Figure 7. Average profile of diffusive CO2 emissions at each level 
throughout the campaigns. Source: Own elaboration.

Table 3. Estimates of the average diffusive CO2 emissions by depth and campaign.

Depth Campaign Average Standard Error
95% Wald Confidence Interval

Lower Higher

Bottom 1 4,638.39 176.77 4,304.56 4,998.12

2 5,368.67 359.20 4,708.86 6,120.93

3 5,001.85 317.20 4,417.22 5,663.85

4 4,810.38 340.04 4,188.03 5,525.21

Surface 1 7,271.00 480.50 6,387.69 8,276.47

2 9,530.77 468.78 8,654.87 10,495.30

3 5,420.82 421.61 4,654.39 6,313.46

4 5,596.55 384.78 4,891.00 6,403.87

Source: Own elaboration.
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Tables  4  and  5 show the peer-to-peer comparisons 
of the interaction effect. Table 4 fixes the campaign and 
compares the depths, different from Table 5, which fixes 
the depth and compares the campaigns.

From the results of Table 4, it can be noted that there 
is a difference in diffusive CO2 emissions between surface 
and bottom only in campaigns 1 and 2 (p-value <0.05). 
In campaign 1, the average of emissions was higher on the 
surface (p-value < 0.001). The same result occurs in campaign 
2, which corroborates the results described in Table 3.

It is also noted that emissions on the surface are higher 
than those in the bottom in all campaigns, which can be 
explained by the production of carbon dioxide in the water 
column by the breathing process of aquatic organisms 
(Rogerio et al., 2013; Lu et al., 2020).

In 2011 and 2012, Marcelino et al. (2015) measured 
diffusive CO2 emissions in Serra da Mesa and the study 

found no statistically significant differences between the 
rainy (January) and dry (July) seasons, however, it found 
differences between the wet to dry transition periods 
(April) and dry to wet (October).

In Table 5, significant difference (p-value < 0.05) was 
found between campaign 1 and 2, and between campaigns 
2 and 3, with a higher mean for campaign 2, both cases 
presented on the surface reservoir.

This information can be justified by the rainy season 
in the reservoir region, as campaign 2 (February) is 
equivalent to the rainy and flood season of the reservoir 
while campaign 3 (June) is the time of the drought peak.

For the bottom of the reservoir, there was only a 
significant difference in diffusive CO2 emissions only 
between campaigns 1 and 2, with a higher average 
emission in campaign 2. There are no differences between 
campaigns 3 and 4.

Figure 8. Graph of the approximate Cook’s distance, referring to the gamma model adjusted to the data on diffusive CO2 emissions. 
Source: Own elaboration.

Figure 9. Q-Qplot of the residuals of the adjusted model for diffusive CO2 emissions. Source: Own elaboration.
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Table 4. Partial results of multiple comparisons of the interaction effect (depth * campaign) on the diffusive CO2 emission variable 
fixing the campaign.

Campaign Depth (i) Depth (j)
Mean 

Difference 
(i-j)

Standard 
Error

Degrees of 
freedom

p-Value 
(Bonferroni)

95% Wald Confidence 
Interval

Lower Higher

1
Bottom Surface -2,632.61 511.98 1 0.00 -3,636.07 -1,629.15

Surface Bottom 2,632.61 511.98 1 0.00 1,629.15 3,636.07

2
Bottom Surface -4,162.10 590.57 1 0.00 -5,319.61 -3,004.60

Surface Bottom 4,162.10 590.57 1 0.00 3,004.60 5,319.61

3
Bottom Surface -418.97 527.61 1 0.43 -1,453.06 615.12

Surface Bottom 418.97 527.61 1 0.43 -615.12 1,453.06

4
Bottom Surface -786.17 513.49 1 0.13 -1,792.60 220.26

Surface Bottom 786.17 513.49 1 0.13 -220.26 1,792.60

Source: Own elaboration.

Table 5. Partial results of multiple comparisons of the interaction effect (depth * campaign) on the diffusive CO2 emission variable, 
setting the depth.

Depth
Campaign 

(i)
Campaign 

(j)

Mean 
Difference 

(i-j)

Standard 
Error

Degrees of 
freedom

p-Value 
(Bonferroni)

95% Wald Confidence 
Interval

Lower Superior

Bottom 1 2 -730.27 250.31 1 0.02 -1,390.66 -69.89

3 -363.45 395.82 1 1.00 -1,407.73 680.82

4 -171.99 412.44 1 1.00 -1,260.11 916.14

2 1 730.27 250.31 1 0.02 69.89 1,390.66

3 366.82 463.03 1 1.00 -854.76 1,588.41

4 558.29 608.29 1 1.00 -1,046.53 2,163.10

3 1 363.45 395.82 1 1.00 -680.82 1,407.73

2 -366.82 463.03 1 1.00 -1,588.41 854.76

4 191.46 566.78 1 1.00 -1,303.84 1,686.77

4 1 171.99 412.44 1 1.00 -916.14 1,260.11

2 -558.29 608.29 1 1.00 -2,163.10 1,046.53

3 -191.46 566.78 1 1.00 -1,686.77 1,303.84

Surface 1 2 -2,259.77 700.06 1 0.01 -4,106.70 -412.83

3 1,850.19 609.04 1 0.01 243.38 3,456.99

4 1,674.46 558.07 1 0.02 202.11 3,146.80

2 1 2,259.77 700.06 1 0.01 412.83 4,106.70

3 4,109.95 519.90 1 0.00 2,738.31 5,481.59

4 3,934.22 541.02 1 0.00 2,506.87 5,361.57

3 1 -1,850.19 609.04 1 0.01 -3,456.99 -243.38

2 -4,109.95 519.90 1 0.00 -5,481.59 -2,738.31

4 -175.73 435.33 1 1.00 -1,324.24 972.78

4 1 -1,674.46 558.07 1 0.02 -3,146.80 -202.11

2 -3,934.22 541.02 1 0.00 -5,361.57 -2,506.87

3 175.73 435.33 1 1.00 -972.78 1,324.24

Source: Own elaboration.
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5. Conclusions

The adjusted GHG model allowed the analysis of 
diffusive CO2 emissions between the reservoir, surface, and 
bottom levels and throughout the campaigns. A statistically 
significant difference was found in the average emissions 
both between the depth levels of the future reservoir and 
throughout the campaigns.

It was noted that the average diffusive CO2 emissions 
are higher when collected on the surface of the reservoir 
than on the bottom.

It was also detected that the average of emissions 
is higher during campaign 2 (February 2018), which is 
equivalent to the rainy season in the reservoir region, a 
fact that corroborates the descriptive analyzes carried 
out initially.

Therefore, the study showed that the period of rain and 
drought influence the diffusive emissions of CO2 as well 
as the depth at which the data are collected, considering 
that according to the precipitation the fluviometric station 
of the reservoir is changed.

The longitudinal study allowed the creation of a 
regression model that explained the behavior of diffusive 
CO2 emissions over time and within the future reservoir. 
This allows the researcher a sense of the environment in 
which the data is collected and the influence they may 
be subjected to.
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