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Abstract

Polystyrene nanoplastics (PS-NPs) are ubiquitous environmental pollutants that can cause oxidative stress in various organs,
including the liver. Didymin is a dietary flavanone that displays multiple pharmacological activities. Therefore, the present study
evaluated the palliative role of didymin against PS-NPs-induced hepatic damage in rats. Albino rats (n=48) were randomly
distributed into 4 groups: control, PS-NPs treated group, PS-NPs + didymin co-administered group, and didymin supplemented
group. After 30 days, PS-NPs intoxication lowered the expression of Nrf-2 and anti-oxidant genes [catalase (CAT), superoxide
dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), glutathione-S-transferase (GST), and heme
oxygenase-1 (HO-1)], whereas the expression of KEAP1 kelch like ECH associated protein 1 (Keap-1) was increased. PS-NPs
exposure also reduced the activities of anti-oxidants enzymes (CAT, SOD, GPx, GSR, GST, GSH, and OH-1), while
malondialdehyde (MDA) and reactive oxygen species (ROS) levels were increased. The levels of alanine transaminase (ALT),
aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were increased in PS-NPs-exposed rats. Moreover,
inflammatory indices [interleukin-1p (IL-1B), tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), nuclear factor-kappa B
(NF-xB), and cyclooxygenase-2 (COX-2)] were increased in PS-NPs-exposed rats. Furthermore, PS-NPs intoxication
increased the expressions of apoptotic markers including Bax and Caspase-3, as well as reducing Bcl-2 expression. The
histopathological analysis showed significant damage in PS-NPs-treated rats. However, didymin supplementation ameliorated
all the PS-NPs-induced damage in the liver of rats. Therefore, it was concluded that didymin can act as a remedy against

PS-NPs-induced liver toxicity due to its anti-apoptotic, anti-oxidant, and anti-inflammatory activities.
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Introduction

Numerous environmental toxins can affect the organs
of the body. Special focus is being devoted to emerging
contaminants, such as plastic waste, plasticizers, and
plastic additives, which are released into the environment
directly or indirectly (1). It is evident that plastic pollution is
so pervasive in the environment that we can say that our
world is made of plastic (2). In 2019, global plastic pro-
duction reached 368 million metric tons (Mt) and is
expected to double in the next twenty years (3). Polysty-
rene (PS) is an important thermostable plastic that is often
used in the manufacturing of toys, CDs, electronics,
toothbrushes, packaging foam, and several other personal
care products (4).

Nanoplastics are plastic fragments with a diameter
of around 1000 nm that are formed from larger plastics
by photodegradation, chemical deterioration, and wave
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erosion (5). Polystyrene nanoplastics (PS-NPs) are new
environmental pollutants that have been detected in the
air, drinking water, and human foods such as seafood, tea
bags, beer, table salt, vegetables, honey, fruits, and sugar
(6). Human exposure to PS-NPs occurs through multiple
ways such as inhalation, ingestion, and dermal contact
(7). PS-NPs can easily cross biological membranes due
to their small size and, thus, accumulate in tissues and
subsequently induce physiological damages (8). PS-NPs
exposure induces reactive oxygen species (ROS) produc-
tion that leads to endoplasmic reticulum and oxidative
stress (9,10). The liver is a metabolic center that plays an
important role in the majority of metabolic illnesses, such
as diabetes and obesity. PS-NPs have the ability to induce
hepatic inflammation, alterations in the lipid profile, and
cholesterol buildup in the liver (11).
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Flavonoids are a class of secondary metabolites that
are abundant in many plants. Due to their proven effects
in the prevention and treatment of multiple ailments,
flavonoids have gained the attention of researchers (12).
Didymin is a dietary glycoside flavanone that is reported in
campanula and citrus fruits such as mandarin, orange,
bergamot, and oregano. Recent studies have demon-
strated that didymin has cardio-protective, anti-oxidant,
and anti-cancer potentials (13). Based on these putative
pharmacological properties of didymin, the current study
was designed to determine the protective role of didymin
on PS-NPs-induced hepatic damage.

Material and Methods

Chemicals
PS-NPs and didymin were purchased from Sigma-
Aldrich, Germany.

Animals

Albino rats (n=48) weighing 180+20 g (6-8 weeks
old) were used for this research. The animals were
acquired from the Animal House of the University of
Agriculture, Faisalabad (UAF), and kept in stainless-steel
cages at 24-26°C with a 12-h light/dark cycle. During the
whole ftrial, rats were given free access to water and
commercial feed. Rats were treated and handled accord-
ing to the protocol of European Union of Animal Care and
Experimentation (CEE Council 86/609) that was further
approved by University of Agriculture, Faisalabad, Ethical
Committee (20189-92/01-06-2023).

Experimental layout

The 48 albino rats were allocated into 4 groups of
twelve rats each: control, PS-NPs (50 ug/kg) exposure,
PS-NPs (50 pg/kg) + didymin (1 mg/kg), and didymin
(1 mg/kg) supplementation. All substances were given
through oral gavage. After 30 days of treatment, the rats
were anesthetized with 6 mg/kg of xylazine and 60 mg/kg
of ketamine (Sigma Aldrich, Germany) (14,15) and were
decapitated; cardiac blood was collected in heparinized
tubes. Serum samples were obtained by centrifuging the
blood at 1000 g for 15 min at room temperature and stored
at —20°C for biochemical assays. The liver was removed
and sliced into two equal parts. One part was packed in
zip bags and stored at —80°C for biochemical analysis,
while the other part was fixed in 10% formalin for
histopathological examination.

Evaluation of antioxidant enzymes

Catalase (CAT) activity was estimated following the
procedure of Aebi (16). Superoxide dismutase (SOD)
activity was assessed using the protocol of Kakkar et al.
(17), and glutathione peroxidase (GPx) activity was
determined using the procedure elucidated by Rotruck
et al. (18). Glutathione reductase (GSR) activity was
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determined by following the technique of Carlberg and
Mannervik (19), and the activity of glutathione-S-transfer-
ase (GST) was evaluated using the protocol of Habig et al.
(20). Glutathione (GSH) activity in hepatic tissue was
appraised using the method of Jollow et al. (21), and
heme oxygenase-1 (HO-1) activity was determined by
analyzing the formation of bilirubin using the method of
Magee et al. (22).

Evaluation of oxidative stress markers

Malondialdehyde (MDA) and ROS levels were eval-
uated using the techniques of Ohkawa et al. (23) and
Hayashi et al. (24), respectively.

Ribonucleic acid extraction and real-time quantitative
reverse transcription polymerase chain reaction

The expression of Nrf-2/Keap-1, anti-oxidant genes,
and Caspase-3, Bcl-2, and Bax were determined by qRT-
PCR. RNA was separated using TRIzol reagent (Sigma
Aldrich). Total RNA was changed into complementary
DNA with Fast Quant RT kit (Takara, China). Changes
in these expressions were appraised by 27AACT using
B-actin as an internal control. Table 1 displays the primer
sequences of the target genes, as reported previously
(25,26).

Hepatic function markers

The level of liver function enzymes, i.e., aspartate
aminotransferase (AST), alkaline phosphatase (ALP) and
alanine transaminase (ALT), was assessed using com-
mercial kits from Wiesbaden (Germany).

Analysis of inflammatory indices

Inflammatory indices, i.e., tumor necrosis factor alpha
(TNF-a), nuclear factor-kappa B (NF-kp), interleukin (IL)-
18, and IL-6 levels and cyclooxygenase-2 (COX-2)
activity, were estimated using the ELISA kits according
to manufacturer’s instructions (BioTek, USA).

Histopathological analysis

For histopathological observation, hepatic tissues
were gently washed with cold saline solution. Later,
hepatic tissues were fixed in 10% formalin solution.
Then, the tissues were gradually dehydrated by passing
through rising grades (70, 90, and 100%) of ethanol and
embedding was performed in paraffin wax. Five micro-
meter-thick sections were made with a 820 Spencer rotary
microtome (Indiamart, Ambala, Haryana) and stained by
using hematoxylin and eosin. Finally, the slides were
examined under a light microscope that was equipped
with an automatic photographic system (Nikon, Japan).

Statistical analysis

Data are reported as means £ SEM. One-way ANOVA
and Tukey’s test were applied using Minitab software
(USA). The level of significance was set at P <0.05.
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polymerase (RT-gPCR).
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Gene Primers 5'—>3’ Accession number

Nrf-2 F: ACCTTGAACACAGATTTCGGTG NM_031789.1
R: TGTGTTCAGTGAAATGCCGGA

Keap-1 F: ACCGAACCTTCAGTTACACACT NM_057152.1
R: ACCACTTTGTGGGCCATGAA

CAT F: TGCAGATGTGAAGCGCTTCAA NM_012520.2
R: TGGGAGTTGTACTGGTCCAGAA

SOD F: AGGAGAAACTGACAGCTGTGTCT NM_017051.2
R: AAGATAGTAAGCGTGCTCCCAC

GPx F: TGCTCATTGAGAATGTCGCGTC NM_030826.4
R: ACCATTCACCTCGCACTTCTCA

GSR F: ACCAAGTCCCACATCGAAGTC NM_053906.2
R: ATCACTGGTTATCCCCAGGCT

GST F: TCGACATGTATGCAGAAGGAGT NM_031509.2
R: CTAGGTAAACATCAGCCCTGCT

HO-1 F: AGGCTTTAAGCTGGTGATGGC NM_012580.2
R: ACGCTTTACGTAGTGCTGTGT

Bax F: GGCCTTTTTGCTACAGGGTT NM_017059.2
R: AGCTCCATGTTGTTGTCCAG

Bcel-2 F: ACAACATCGCTCTGTGGAT NM_016993.1
R: TCAGAGACAGCCAGGAGAA

Caspase-3 F: ATCCATGGAAGCAAGTCGAT NM_012922.2
R: CCTTTTGCTGTGATCTTCCT

B-actin F: TACAGCTTCACCACCACAGC NM_031144
R: GGAACCGCTCATTGCCGATA

F: forward; R: reverse.

Results

Effect of didymin on Nrf-2/Keap-1 pathway

PS-NPs exposure prompted a significant (P <0.05)
decrease in the expressions of Nrf-2 and anti-oxidant
genes (SOD, GPx, CAT, GST, HO-1, and GSR), whereas
the expression of Keap-1 in PS-NPs-exposed rats was
increased compared to the control animals. The adminis-
tration of PS-NPs with didymin increased Nrf-2 and anti-
oxidant enzyme expressions, as well as down-regulating
Keap-1 expression. Moreover, the results of didymin-only
supplemented rats were comparable to the control rats
(Figures 1 and 2).

Effect of didymin on anti-oxidant activity

Intoxication by PS-NPs resulted in a significant
(P<0.05) reduction in the activities of anti-oxidants
SOD, CAT, GSR, GPx, GST, HO-1, and GSH in the PS-
NPs-exposed group in contrast to the control animals. In
the PS-NPs + didymin co-treated group, the activities of
anti-oxidant enzymes were significantly increased com-
pared to the PS-NPs group. Furthermore, the anti-oxidant
activities in didymin-only group were similar to that of the
control group (Table 2).
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Effect of didymin on oxidative stress markers

PS-NPs significantly (P <0.05) increased the levels
of MDA and ROS in contrast to the control animals.
However, the PS-NPs + didymin group had significantly
lower MDA and ROS levels compared to PS-NPs rats.
Furthermore, these levels were almost similar to the
didymin-only and control groups (Table 2).

Effect of didymin on hepatic function markers
PS-NPs significantly (P <0.05) increased the levels of
AST, ALT, and ALP compared to the control rats. However,
PS-NPs + didymin co-treatment led to a substantial
decrease in the levels of AST, ALT, and ALP compared to
the PS-NPs group. Furthermore, in didymin-only treated
group, these levels were similar to the control group (Table 3).

Effect of didymin on apoptotic markers

The exposure of PS-NPs significantly (P<0.05)
increased the expressions of Caspase-3 and Bax, as well
as reducing the Bcl-2 expression compared to the control
group. Nevertheless, supplementation of PS-NPs +
didymin significantly reduced Caspase-3 and Bax expres-
sion, while increasing the Bcl-2 expression in contrast to
the control group. Moreover, no significant change was
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Figure 1. Effect of polystyrene nanoplastics (PS-NPs) and didymin on the expression of A, Nrf-2 and B, Keap-1. Data are reported as
means + SEM. #P <0.05 compared to control, *P <0.05 compared to PS-NPs-treated group (ANOVA).
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Figure 2. Effect of polystyrene nanoplastics (PS-NPs) and didymin on the expression of A, catalase (CAT); B, superoxide dismutase
(SOD); C, glutathione peroxidase (GPx); D, glutathione reductase (GSR); E, glutathione-S-transferase (GST); and F, heme oxygenase-1
(HO-1). Data are reported as means = SEM. #P <0.05 compared to control, *P <0.05 compared to PS-NPs-treated group (ANOVA).
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Table 2. Effect of polystyrene nanoplastics (PS-NPs) and didymin on biochemical parameters.
Parameters Groups
Control PS-NPs PS-NPs + Didymin Didymin
CAT (mU/g protein) 9.64+0.55 4.55+0.32% 7.85+0.25* 9.67 £0.54*
SOD (Um/g protein) 7.72+0.23 2.86+0.33" 5.97+0.29* 7.75+0.23*
GPx (Um/g protein) 26.46 £1.14 6.63+0.46% 17.74 £1.08* 26.63 +1.20*
GSR (nM NADPH oxidized/min per mg tissue) 6.31+£0.22 1.94+0.19% 5.19+0.29* 6.33+£0.21*
GST (nM/min per mg protein) 32.85+1.18 12,19+ 1.40% 26.45+0.68* 23.31+17.87*
GSH (uM/g tissue) 19.08 +£0.50 3.85+0.26% 16.72 +0.68* 19.18 +£0.55*
HO-1 (pmoles bilirubin/mg protein per h) 235.48 £ 10.56 42.70 + 6.48% 155.93 + 11.99* 234.40 £13.39*
ROS (Um/g tissue) 1.33+0.09 8.19+0.33% 2.29+0.22* 1.31£0.09*
MDA (nmol/mg protein) 0.79+0.12 6.84 +0.24* 1.33+0.21* 0.77£0.13*

Data are reported as means+SEM. #P<0.05 compared to control, *P<0.05 compared to PS-NPs-treated group (ANOVA).
CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase; GSR: glutathione reductase; GST: glutathione-S-transferase;
HO-1: heme oxygenase-1; MDA: malondialdehyde; ROS: reactive oxygen species.

Table 3. Effect of polystyrene nanoplastics (PS-NPs) and didymin on liver function markers.

Parameters Groups

Control PS-NPs PS-NPs + Didymin Didymin
ALT (UL) 42.83+£1.71 88.16+3.61% 58.28 +2.79* 42.81£1.71*
AST (U/L) 76.54 +2.69 187.07 + 4.52* 93.08 +2.31* 76.51+2.69*
ALP (U/L) 125.55+2.15 348.57 +7.18"* 190.41 + 5.60* 124.64 +£3.10*

Data are reported as means + SEM. *P <0.05 compared to control, *P <0.05 compared to PS-NPs-treated
group (ANOVA). ALT: alanine transaminase; AST: aspartate aminotransferase; ALP: alkaline phosphatase.
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Figure 3. Effect of polystyrene nanoplastics (PS-NPs) and didymin on the expression of A, Bax; B, Bcl-2; and C, Caspase-3. Data are
reported as means + SEM. #P <0.05 compared to control, *P <0.05 compared to PS-NPs-treated group (ANOVA).

observed in the expressions of these markers in didymin-
only and control groups (Figure 3).

Effect of didymin on inflammatory markers
Inflammatory indices of IL-6, NF-«xB, IL-1B, and TNF-o
levels and COX-2 activity in the liver of the PS-NPs rats
were significantly (P <0.05) elevated in contrast to control
rats. However, compared to the PS-NPs group, these
markers were notably decreased in the co-treated (PS-
NPs + didymin) group. Moreover, no significant variations
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were observed in inflammatory indices between didymin-
alone and control groups (Table 4).

Effect of didymin on liver histology

PS-NPs intoxication resulted in histopathological
damages, such as degenerated hepatocytes, nuclear
dissolution in necrotic cells, degeneration of lobules and
nucleus, congested central veins, and dilated sinusoid.
However, the supplementation of PS-NPs + didymin
significantly decreased these damages compared to the
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Table 4. Effect of polystyrene nanoplastics (PS-NPs) and didymin on liver inflammatory markers.

Parameters Groups

Control PS-NPs PS-NPs + Didymin Didymin
NF-xB (ng/g tissue) 12.73+£1.01 83.28+2.01% 21.77£1.17* 12.65+1.00*
TNF-o (ng/g tissue) 7.26 £0.56 47.03+1.77* 17.20+ 1.26* 7.22+0.54*
IL-1B (ng/g tissue) 23.06 £1.52 89.58 +2.07% 37.32+2.20* 22.95+1.51*
IL-6 (ng/g tissue) 10.43+0.82 65.53 + 1.86" 25.35+2.16* 10.41£0.72*
COX-2 (ng/g tissue) 14.87 £1.27 85.90 + 1.43% 34.34 +1.34* 14.85+1.28*

Data are reported as means + SEM. #*P <0.05 compared to control, *P <0.05 compared to PS-NPs-treated
group (ANOVA). NF-kB: nuclear factor-kappa B; TNF: tumor necrosis factor; IL: interleukin; COX:

cyclooxygenase.

Figure 4. Photomicrographs of rat hepatic tissues. Hematoxylin and eosin staining; scale bar 50 um. A, Control group presenting normal
histology. B, Polystyrene nanoplastics (PS-NPs) intoxication prompted adverse alterations in the liver. C, PS-NPs + didymin group
displayed improved histology of liver tissues. D, Didymin group showing normal histology similar to the control rats.

PS-NPs-exposed group. Moreover, didymin-alone supple-
mented rats showed normal liver histology comparable to
the control rats (Figure 4).

Discussion

Exposure to PS-NPs decreased the expressions of Nrf-
2 and anti-oxidant genes (CAT, SOD, GPx, GSR, and OH-
1), whereas the expression of Keap-1 increased. Nrf-2 is an
important transcription factor that has a central role in
oxidative and electrophilic stress control. In addition, Keap-
1 interacts with Nrf-2, regulating its stability and acting as its
inhibitor (27). During ROS production, Nrf-2 detaches from
Keap-1 through some structural modifications and migrates
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to the nucleus where it interacts with small MAF proteins.
Then, the heterodimers bind to the anti-oxidant responsive
elements and activate the expression of cytoprotective
genes (28). Nrf-2 plays a pivotal role in controlling the
expression of anti-oxidant enzymes (CAT, SOD, GPx,
GSR, and OH-1) (29). However, under excessive ROS
production, the expression of Keap-1 increases while the
expression of Nrf-2 decreases (30). Therefore, decreased
Nrf-2 expression reduces the expression of antioxidant
genes. However, didymin supplementation increased the
expression of Nrf-2 that was further confirmed by the
elevated expression of anti-oxidant genes.

PS-NPs intoxication remarkably reduced the activities
of CAT, SOD, GSR, GPx, GSH, HO-1, and GST, while the
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levels of MDA and ROS increased. The antioxidant
defense system is exhausted when the amount of ROS
produced surpasses the capacity of antioxidants (31). PS-
NPs exposure not only reduces the activities of anti-
oxidant enzymes but also induces lipid peroxidation and
oxidative stress in the hepatic tissues of rats. The
endogenous antioxidant enzymes SOD, GPx, and CAT
are regarded as the first line of defense as they lower the
oxidative stress (32). CAT promotes the breakdown of
H,O, to O, and H,O by limiting the production of the
hazardous ions OH™. SOD transforms superoxide free
radicals into H,O, and O,. To mitigate oxidative stress,
GPx reduces H,0, and lipid peroxide levels. GST plays
an important part in the detoxification process in liver
tissues by promoting the bonding of GSH to xenobiotic
substrates. HO-1 is a cytoprotective enzyme with the
ability to breakdown the heme and plays a notable role in
the regulation of cellular homeostasis. MDA is an indicator
of lipid peroxidation and its level is directly related to the
level of lipid peroxidation. In this study, didymin adminis-
tration significantly increased anti-oxidant activities and
decreased the levels of MDA and ROS due to its anti-
oxidant and radical scavenging property.

PS-NPs intoxication significantly increased the serum
levels of ALT, ALP, and AST. The evaluation of these
enzymes in the blood is one of the most widely used
methods for analyzing hepatic damage. Hepatocyte
apoptosis causes the liver mitochondria to release these
enzymes into the bloodstream, resulting in liver dysbiosis.
According to earlier studies, the excessive production of
ROS affects the integrity of the liver, as indicated by the
unusual increase in the level of hepatic serum enzymes
(33). However, didymin reduced the levels of these
hepatic enzymes due to its hepatoprotective nature.

Apoptosis is one of the major causes of hepatic
damage. Bcl-2 and Bax are associated with the Bcl-2
protein family, which controls the mitochondrial apoptotic
pathway. Bax is an apoptotic marker whereas Bcl-2
defends the cells from apoptosis. An elevation in Bax
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