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ABSTRACT 

Background: This study aimed to evaluate UAV images of Pinus taeda L. stands for classifying trees 
attacked by Sapajus nigritus in Southern Brazil. UAV images were acquired on March 2018, using a 
DJI Phantom Pro 4 over 18.73 hectares. We evaluated different band compositions and vegetation 
indices. Using photo interpretation based on the color of the crown and field measurements, the 
trees were manually labeled as not attacked, dead, and attacked. The classified trees were divided 
into training (75%) and validation (25%), considering three tree crown diameters (0.5, 1, and 1.5 
m) and three region-oriented classification algorithms. The classification accuracy was assessed by 
overall accuracy and the kappa index.

Results: A total of 3,773 trees were manually detected, of which 39% were attacked, 5% died and 
56% were not attacked. The results also indicated that the best-chosen diameter was 0.5 meters, the 
best classifier algorithm was the SVM, and the highest accuracy was represented by the composition 
of the ExG index associated with the original spectral bands. 

Conclusion: We argue that the attacks can be monitored using UAV images and such results provide 
insights for forest management initiatives.
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HIGHLIGHTS

The ExG was the best index for analyzing the forest health of Pinus taeda L.
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INTRODUCTION

Sapajus nigritus Kerr (1972), popularly known as 
capuchin monkey, is a species of primate found in South 
and South-east Brazil Atlantic forest domain. Due to its 
omnivorous diet, during periods of food scarcity due to low 
fruiting season in the Atlantic Forest (Liebsch et al., 2008; 
Tujague and Janson, 2017), Sapajus nigritus supplemented 
its diet with other resources evenly distributed in the habitat 
and presented in forest remnants (Di Bitetti, 2019). However, 
more recently, Sapajus nigritus identified a new food 
source in the exudation of Pinus spp. trees (Rocha, 2000; 
Retslaff et al, 2020). To gain access to exudation, Sapajus 
nigritus removes the bark causing two types of damage: 
windowing (partial stripping of the bark from the trunk) and 
girdling (stripping of the bark in a ring around the trunk). 
Regardless of the type of damage, phloem conduction is 
partially interrupted, causing the upper canopy to dry out. 
Consequently, it may favours the occurrence of pathogens 
and, after some time, the combination of these factors can 
even cause the death of the tree (Koehler and Firkoski, 1996; 
Mikich and Liebsh, 2009; Mikich and Liebsch, 2014; Liebsch 
et al., 2015; Rocha, 2000; Retslaff et al., 2020). Considering 
the importance of the genus Pinus spp. in the Brazilian 
forest sector, whose plantations represent 17% of planted 
forests (Ibá, 2021), remote sensing initiatives for forest 
protection of such stands are extremely important.

The use of remote sensing and aerial images obtained 
by Unmanned Aerial Vehicles (UAV) has been standing out 
and evolving into precision farming applications, including 
tree health detection (Ishida et al., 2018). Forest health is one 
of the criteria used to protect forest stands, given the records 
of pest attacks and the occurrence of diseases in plantations 
in Brazil since the 1990s. However, studies using using remote 
sensing resources and data, such as aerial images obtained 
by UAVs, to identify and quantify the impact of the Sapajus 
nigritus on forest plantations are still scarce. Following this 
theme, recent studies such as Dash et al. (2018) provided a 
substantial review showing the physiological stress in forest 
trees caused by biotic and abiotic factors. Sylvain et al. (2019) 
showed how useful advanced machine learning methods, 
such as deep Convolutional Neural Networks (CNNs), have 
achieved unprecedented performance in object recognition 
and classification tasks. In their study, such approach was 
useful to detect the health status and functional type of 
trees. Interestingly, Safonova et al. (2020) demonstrated the 
significance of remote sensing data in controlling the invasion 
of Polygraphus proximus Blandford on catastrophic damage 
to fir forests (Abies sibirica Ledeb) in Russia, especially in 
Central Siberia. Similarly, Moriya et al. (2021), showed the 
importance of UAV measures for mapping diseases in citrus 
and how useful such information can be used for land 
monitoring and cultural practices at stand and farm level.

This research was based on the application of remote 
sensing technologies to detect the attack of Sapajus nigritus 
on forest plantations, aiming to classify individual trees of 
Pinus taeda L. as attacked, non-attacked and dead trees, using 
UAV images and machine learning algorithms. Our study area 
is a typical loblolly pine stand located in Southern Brazil.

MATERIAL AND METHODS

Description of the area 

The research was conducted in the municipality of 
Bocaina do Sul, in the state of Santa Catarina (Southern 
Brazil), with central coordinates 27°41’32.41” S and 
49°57’46.06” W (Figure 1). According to Alvares et al. (2013), 
the climate of the location is Cfb type (humid subtropical 
mesothermal climate), by the Köppen classification. The 
average temperature is 16.5 °C, the average relative 
humidity of 79.3%, and precipitation is well distributed 
throughout the year, with an annual average of 1,500 mm. 

The forest stands evaluated as indicated by a 
Brazilian forestry company, with 236.21 hectares of Pinus 
taeda L. plantations with ages ranging from 12–18 years 
for pulp and paper production. The spacing used was 3 
meters × 2.5 meters, without silvicultural intervention, that 
is, without pruning and thinning. 

Flight execution

The flight planning was elaborated for two nearby 
areas with attack records, totaling 18.73 hectares, of which 
9.23 hectares were for Area 1 and 9.50 hectares for Area 
2, with 12 and 13 years old, respectively (Figure 1). Both 
areas are very similar each other in terms of structural 
characteristics and were reported with a higher incidence 
of attack by the company. Both areas were surveyed 
individually for optimizing the data acquisition. For aerial 
coverage, aerial imaging was carried out in March 2018, 
using a quadcopter-type UAV, model DJI Phantom 4 
Pro, equipped with a multispectral sensor type CMOS 
(Complementary Metal-Oxide Semiconductor) of 1” with 
20 megapixels of spatial resolution (5 micrometers pixel) 
and focal length of 8.8 mm. The images were captured 
in the visible range: blue (0.40-0.58 nm), green (0.50-0.65 
nm), and red (0.59-0.68 nm). A Global Navigation Satellite 
System (GNSS), i.e., Leica Viva GS15 was used to collect 
ground control points (GCPs), favoring the collection of 
georeferenced images. We adopted a flight hight of 120m 
because the study area showed a gentle topography and is 
allowed by current Brazilian legislation.

The flights were carried out in the early afternoon 
period, between 2 p.m. and 3 p.m., to minimize the shadow 
effect. Flight speed was determined according to weather 
conditions (exposure to luminosity and adverse weather 
conditions) being 7 m.s−1, following a linear route according 
to Redweik (2007) orientation. The lateral and frontal 
overlaps were 80% and 85% in agreement with Mancini 
et al. (2013). After image collection, photogrammetric 
processing was performed at the Agisof Metashape 
Professional (Agisoft LLC, St. Petersburg, Russia), in which 
the corrections related to automatic aerial triangulation, 
generation of the dense point cloud, the rectification of 
images, and acquisition of the mosaic were carried out. 
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Processing data

Vegetation indices were chosen according to the 
spectral bands (only in the visible range) and for presenting 
satisfactory results in the separation of soil and vegetation, 
according to the consulted literature (Table 1).  

To highlight the spectral behavior of the attacked 
trees, different band compositions were selected for 
the twothree areas using the red and blue bands of the 
orthomosaics and the vegetation indexes, which replaced 
the green band for identifying attacked, not attacked, and 
dead trees as function of the color of the crown. Thus, the 
compositions were as follows: Composite 1: band Red, BGI 
Index, and band Blue;; Composite 2: band Red, ExG index, 
and band Blue; Composite 3: band Red, GLI Index, and band 
Blue; Composite 4: band Red, RGI index, and band Blue and 
5: band Red, TGI Index, and band Blue. In addition to the 
compositions, orthomosaics were also used (Figure 2).

To identify the trees, photointerpretation parameters, 
such as color tone, brightness, and texture, were used, for 
establishing three qualitative classes of damage per tree, 
which were: green crown (tree without damage); yellowish/
reddish crown (a tree with recent or former attack); gray 
crown (dead tree). The above parameters were set based 
on field surveys. A total of ten circular plots were distributed 
randomly in the two areas, five each. The size varies 
according to the presence or not of the attack and ranged 
from 5 to 10m. All trees were surveyed, and each crown was 
assigned with a point that was then labeled qualitatively 
into attacked, not attacked, and dead trees, in addition 
to the description of the type of damage (girdling and/or 
windowing) and the number of visible damages per tree.  

In each sample plot, the central coordinate was obtained 
through GNSS signal receivers assurin a perfect match with 
the images. After, we perform a segmentation using the 
mean shift algorithm available in a GIS environment (ESRI, 
2021). The segments were then submitted to a supervised 
classification approach oriented to segments aiming to 
obtain the crown coverage and the soi contribution.

Data analysis

A total of 3,773 were labeled into attacked (1,478), non-
attacked (2,098) and dead (197). The dataset was randomly  
divided into 75% training and 25% validation (Jensen, 2007; 
Pereira and Centeno, 2017). For the 3,773 points, three circle 
sizes with 0.5 m, 1 m, and 1.5 m radius were generated. These 
values were considered to obtain different levels of crown 
coverage and to verify whether this variation in the circle 
sizes could contribute to the possibility of separating the trees 
according to their phytosanitary condition. The algorithms 
Maximum Likelihood (Maxver), Support Vector Machine 
(SVM), and Random Tree (RT) were applied and evaluated.

The assertiveness of the supervised classification by 
the three algorithms was verified by the error matrix and by 
the values of the overall accuracy and kappa index. Overall 
accuracy refers to the total number of correctly classified 
samples (that is, the sum of true positives for all classes) 
divided by the total number of samples. The Kappa index 
evaluates the agreement of the prediction with the true 
class. This metric compares an observed accuracy with an 
expected accuracy (that is, it considers the random chance 
of sorting correctly) (Nevalainen et al., 2017). 

Figure 1: Location of the Santa Catarina State within Brazil with  Boundary of the forest stand and the indication of the 
surveyed area by UAV. *Note: Local coordinates have been omitted for confidentiality reasons.
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Figure 2: Subsets used for the evaluated areas for a stand 
of Pinus taeda L. attacked by Sapajus nigritus located in 
Bocaína do Sul – Santa Catarina.

Vegetation Index (VI) Equation Reference
BGI B3/B2 Zarco-Tejada et al. (2005)
ExG 2 *B2 – B1 – B3 Woebbecke et al. (1995)
GLI (2* B3 – B1 – B2) – (2* B3+ B1+ B2) Louhaichi et al. (2001)
RGI B1/B2 Coops et al. (2006)
TGI - 0,5 * [(B1 – B3) * (B1 –B2) – (B1 – B3) * (B1 – B2)] Hunt et al. (2011)

Where, BGI : Blue-Green Pigment Index; ExG: Excess green, GLI: Green Leaf Index; RGI: Red-green index, TGI: Triangular Greenness Index, B1: red 
(0.59-0.68 nm), B2: green (0.50-0.65 nm), and  B3: blue (0.400.58 nm).

Table 1: Vegetation indices derived for a stand of Pinus taeda L. attacked by Sapajus nigritus located in Bocaina do 
Sul – Santa Catarina.

RESULTS

The use of vegetation indices (VI) made it possible to 
visually differentiate the health status of the trees (attacked, 
not attacked and dead) in the areas analyzed in manual 
detection. The scale of values of each vegetation index varied, 
and the ExG presented the highest values for all classes 
with the TGI presenting the lowest values. Thus, for the two 
evaluated areas, the ExG index showed higher separability 
between vegetation and bare soil. It also provided greater 

separation between the attacked, non-attacked, and dead 
trees. When comparing the attacked and non-attacked trees, 
the reflectance decreased, lowering the VI values (Figure 3). 
For dead and non-attacked trees, high reflectance values 
were found, causing therefore a misclassification in these two 
classes. On the other hand, the area classified as bare soil 
presented low values in all VI in the evaluated areas due to 
largely closed canopies needlelike leaves.

Figure 3: Boxplot of vegetation indices (VI) calculated 
with training classes for the two areas (a) Area 1 and (b) 
Area 2, respectively.

The manual classification of the trees (Figure 4) 
revealed differences for each analyzed area and the highest 
percentage of trees attacked was identified in Area 1 (41.5%). 
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Area 2 presented the largest number of non-attacked trees 
(59.3%). However, when the attack is recent, the crown 
still presents non-attacked behavior with apparent green 
needlelike leaves upon the sensor perspective.

The classification obtained with the 0.5 m samples 
showed superior statistics (i.e., overall accuracy and kappa 
index) at 80%, and composition 2 showed the highest values, 
with 88% overall accuracy and an 83% kappa index. For the 
1 m samples, the RT and SVM methods were superior (with 
overall accuracy ranging from 0.66 to 0.79, and kappa index 
between 0.46 and 0.64, respectively). Maxver presented an 
overall accuracy ranging from 0.57 to 0.61 and kappa index 
below 54%. For the 1.5 m samples, compositions 1, 2, and 3 
showed evaluation statistics above 80% whereas the other 
images had results below 70%. In Area 2, the classification 
obtained with circle samples with a 0.5 m radius showed 
statistics between 67 and 91%. The classification in true colors 
had greater accuracy than the classification tested with the 
vegetation indexes, considering the SVM method. For samples 
with a 1 m radius, the Maxver method was noticeably inferior 
and the performance of the RT method, which was significant 
in compositions 1, 3, 4, and 5, stood out, with overall accuracy 

Figure 4: Manual detection of trees as a function of their 
sanity for area 1 (a) and area 2 (b) analyzed from a Pinus 
taeda L. stand located in Bocaina do Sul – SC.

and kappa index greater than 60%. The SVM method provided 
the best classification for the orthomosaic in true colors and 
with the composition with ExG. Samples with a larger radius 
(1.5 m) had statistics below 75%. 

The classification using SVM method for the first 
area revealed that the best distinction of the attacked 
trees occurred in the classification with the ExG index 
composition (Figure 4). In all combinations, the samples of 
the non-attacked trees were misclassied with bare soil. The 
best representativeness of attacked trees occurred with the 
lowest errors of omission and commission among classes, 
and the higher accuracy values (I.e., overall accuracy of 
0.88 and kappa of 0.83) was achieved choosing the ExG 
as an input for the first area (Figure 5). Interestingly, area 2 
showed better performance usingthe use of true colors for 
differentiating attacked from non-attacked trees showing 
the smallest errors of omission or commission. With the use 
of BGI, dead trees were identified as attacked and with ExG, 
they were misclassified as non-attacked trees.

DISCUSSION

According to the analyses performed in the two 
areas, in the initial phase, no visual signs of attack are 
identified since this damage occurs in the trunk of the tree 
while the crown remains green upon the UAV perspective. 
However, over time, the symptoms of the attack evolve, 
and the needlelike leaves become yellowish and/or reddish 
(Vogelmann et al., 2009). According to the authors, if the 
attack progresses to severe stages, it could even cause the 
death of attacked tree. Regarding the compositions tested 
with the different VI (Figure 2), the difference in the number 
attacked and non-attacked trees for the two selected areas 
analyzed contributed to evidence the different behaviors 
and the difficulty of classifying attacked from non-attacked 
trees once the injury was caused recently. According to the 
results reported by Liebsch et al. (2015), windowing is the 
least harmful damage in terms of wood increment, however, 
with greater damage to the quality of the wood. The girdling 
is mostly responsible for the partial drying of the individuals, 
disrupting the exudation transport above the lesion.

The VI derived for each study area and their respective 
relationship with the training classes is restricted to the visible 
spectrum. The analysis of the VI for the evaluated classes 
showed differences according to the analyzed spectral 
range (Figure 3). Such variation is due to leaf biochemical 
properties, especially those related with the chlorophyll 
content that is mostly affected by possible stress caused 
by the attack. Such behavior and variability also occurred 
in the evaluation of the impact of Ips topographus Linnaeus 
attack when analyzing the spectral reflectance characteristics 
of Picea abies L. developed by Abdullah et al. (2018). The 
inclusion of additional cameras operating in the near-infrared 
or even shortwave infrared bands would surely contribute for 
a better assessment of the health of the attacked trees and 
are suggested for future studies. However, some challenges 
may still occur since the typical green color may remain some 
days after the injury, bringing some additional challenges 
and encouraging further studies.
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The manual classification of trees into attacked, 
non- attacked provided relevant information for the 
analyzed area in form of mapsthat can be used by foresters 
(Figure 4). Such information can provide  potential analysis 
and allow the identification of trees that will have limitation 
in the growth rate. As a consequence, a decision about 
eventually removing attacked trees as suggested by Hansen 
et al. (2010) can be taken. Thus, note the importance of 
monitoring the attacked trees, especially in the initial 
stage of the development of the tree that could be then 
labeled for pruning and thinning, supporting management 
initiatives and, enabling the adoption of strategies to reduce 
the impact of the attack of this primate.

From the selected classification algorithms , we 
noticed that the best accuracy were obtained with a radius 
circle of 0.5 m and using SVM for area 1. Such achievents 
are in agreement with those reported by Behmann et al. 
(2014) when studying the detection of the influence of water 
stress on barley plants using VI and SVM. In this research, to 
the plants were distinguished between healthy and stressed 
plants. In general, the reported results indicate that for 
all tested spectral compositions, the data of the samples 
generated with circles with a radius of 0.5 m provided the 
best performance. In addition, classifying images using 

SVM method produced the highest overall precisions, with 
overall accuracy ranging from 0.56 to 0.83 and 0.73 to 0.91 
for the kappa index in both areas as shown in Figure 5. 

The variation in the combinations and areas tested 
is due to the spectral bands evaluated in each VI since the 
BGI does not use red in its calculation and the ExG covers 
the three bands of the visible spectrum, presenting greater 
sensitivity to the differences of reflectance between tree 
individuals with signs of attack and without damage. In the 
other compositions, the attacked trees were erroneously 
classified as non-attacked, especially in crowns with a 
transition from greenish tones (characterizing individuals 
without damage) to yellowish tones (signaling initial 
symptoms of attack). The bare soil was misclassified 
with the other classes by crown conditions and by the 
presence of dry vegetation. 

The performance of the tested algorithms is related 
to some specific characteristics, as explained below. One 
factor that can influence this process refers to isolating 
individual trees and distinguishing brightness between the 
canopies and the bare soil. This depends on the spatial 
resolution of the image used and the size of the canopies. 
Images with ultra-high spatial resolution, that is, with GSD 
between 5 to 15 cm, show many details of the crown, such 

Figure 5: Kappa index of the tested algorithms for the classification of the forest health of Pinus taeda L. Where: 
MXV: Maxver; RT: Random Tree; SVM: Support Vector Machine; Ortho: orthophoto; Comp1: R-BGI-B; Comp2: R-ExG-B; 
Comp3: R-GLI-B; Comp4: R-RGI-B e Comp5: R-TGI-B. The details of the compositions are further detailed in Figure 2.
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as branches and existing variations. However, the lower the 
spatial resolution, the lower the ability to differentiate the 
crown area and the soil, especially for trees with reduced 
crown diameters. Moreover, in these images, the brightness 
variation in the crown of trees with larger crowns causes 
greater commission errors (Ke and 2011). Such evidence is in 
agreement with the results reported by Lausch et al. (2013). 
In their study, the use of data with higher spatial resolution 
such as UAV derivatives may provide greater accuracy in 
classification. The authors researched the effects of spatial 
resolution on accuracy in the classification of damage 
caused by bark beetles with larger ground sample distance 
(GSD, of 4 cm and 7 cm). The smaller GSD (4 cm) provided 
better classification accuracy since the better results with 
higher spatial resolutions are probably due to the lower 
level of mixing of the spectrum of adjacent objects. 

Data from the tested classifications indicate that 
this individual tree-based approach can be trained in larger 
areas, based on the results of a smaller and representative 
area, as recommended by Nasi et al. (2015). These authors 
also recommend using phenological variations of the trees 
evaluated by time series and checking the calibration and 
due processing of remotely located data. This concept is 
therefore, encouraged for further studies allowing a better 
assessment of the damage over time. Multi-temporal 
monitoring of a forest stand is recommended since it may 
indicate new attacks and spatial patterns (Senf et al., 2017). 
Other spectral ranges, such as near-infrared (NIR) and 
shortwave infrared (SWIR) (Foster et al. 2016; Abdullah et 
al. 2018), in medium-resolution spatial or thermal sensors 
(Junttila et al. 2016) with sensors embedded in UAVs can 
provide additional information about the health status. 

As already described, the classification error between 
the attacked, non-attacked, and dead trees can be explained 
by using heterogeneous pixels as a function of spatial 
resolution, due to the difficulty in separating the crowns 
and the occurrence of trees with low initial attacked level. 
This also occurred in the research conducted by Negron-
Juarez et al. (2011), which reported the underestimation of 
tree mortality detection at the subpixel level (small forest 
gaps) in the Amazon using Landsat-5 data, with a pixel of 
30 meters. At higher levels of tree mortality, the accuracy of 
the single datum classification was higher. 

As previously commented by Liebsch et al. (2015) 
and Liebsch et al. (2018), advancements in managing 
Pinus taeda stands under Sapajus nigritus attacks bring 
new perspectives for both management and conservation 
initiatives. However, many other factors still need to 
be considered in the context of forest management 
initiatives such as food supplementation and surveillance 
(Mikich and Liebsch, 2014ab). 

A better assessment of the tree resources in 
nearby forest remnants is also strongly recommended as 
reported by Tujague and Janson (2017). In their research, 
they argue that forest remnants in the tropics may have 
very low densities and vary across time in their seasons of 
peak fruiting and maturation rates. As recommended by 
Liebsch and Mikich (2017) other tree species that suffer 
little, or no damage could be serve as buffer zone in forest 

stands nearby remnants. According to these authors, it also 
opens new perspectives for  the  improvement  and  genetic 
engineering of Pinus taeda stands. However, these authors 
also pointed out that these strategies shll be combined 
with the enrichment of native forests in the nearby forest 
remnants that is generally low.

This research also shows the applicability of high 
spatial resolution images acquired from UAVs to explore 
the attack by Sapajus nigritus. Further steps could evaluate 
the applicability of automatic counting methods. It also 
brings new perspectives for combining photogrammetric 
techniques and checking the applicability of digital image 
processing and deep learning (DL) techniques to extract 
crown attributes from the images. Hence, it allows further 
analysis of the robustness of the reported approach 
to count objects and compare it with forthcoming up-
to-date methods. Therefore, both the marking point, 
annotated in the center of each structure and a bounding 
box annotation using bounding boxes as suggested by 
Biffi et al. (2021) in commercial apple fruit orchards is 
recommended here for completeness of comparisons 
allowing time-demanding performance assessments. 
Interestingly, it would be to evaluate hyperspectral sensors 
or cameras acquiring images in additional wavelengths 
such as NIR, SWIR and thermal, to evaluate better the 
initial attack stage that still remains a challenge.

CONCLUSION

The best algorithm for classifying the health of 
Pinus taeda L. trees. attacked by Sapajus nigritus was the 
SVM, and the highest accuracy was represented by the 
composition of the ExG index associated with the original 
spectral bands. In addition, the results were promising, and 
replicable and could help in the management of Pinus taeda 
stands attacked by Sapajus nigritus. However, more studies 
and public initiatives are encouraged to revise the quality of 
the forest remnants nearby these forest plantations.
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