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Xuebijing improves inflammation and pyroptosis of acute lung injury by up-
regulating miR-181d-5p-mediated SPP1 inactivation
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H I G H L I G H T S

� XBJ improves LPS-induced lung cell inflammation and pyroptosis.
� miR-181d-5p inhibits LPS-induced inflammatory response and pyroptosis of lung epithelial cells.
� XBJ elevates miR-181d-5p and improves LPS-induced pyroptosis of lung epithelial cells.
� XBJ upregulates miR-181d-5p and inhibits SPP1 to protect lung epithelial cells from LPS-induced injuries.
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A B S T R A C T

Background: Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on
the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI.
Methods: The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg)
three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 μg/mL) and ATP (5 mM) to induce
pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary
edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio,
HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by
ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65,
NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting.
The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase
assay.
Results: XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines,
and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p
and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated
for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on
LPS-induced inflammation and pyroptosis.
Conclusion: XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.
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Introduction

Acute Lung Injury (ALI) refers to a series of lung lesions caused by
multiple lung injuries, which can induce serious lung diseases and lead
to serious sequelae and high mortality [1,2]. ALI is characterized by
severe acute inflammatory processes, leading to increased alveolar per-
meability, protein and white blood cell accumulation, and pulmonary
edema [3]. There is still a lack of effective drugs to control and treat ALI
[4,5]. Therefore, there is an urgent need to find new drugs to relieve
ALI.

Xuebijing (XBJ) is a Chinese herbal compound that is mainly com-
posed of Honghua (Carthamus tinctorius), Chi shao (Paeoniae radix),
Danshen (Salvia divinorum), It consists of Danggui (Angelica sinensis)
and Chuanxiong (Ligusticum wallichii Franchet) [6]. Reports have
emphasized the anti-endotoxin and anti-inflammatory effects of XBJ [7
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−9]. Some studies have confirmed that XBJ can ameliorate lung injury.
For example, XBJ can ameliorate inflammation of lung injury [10].
Recently, XBJ has been approved for the treatment of sepsis in China
through clinical trials [11]. However, the detailed mechanism of XBJ in
ALI is unclear.

NLRP3-mediated pyroptosis of macrophages can aggravate lung
inflammation in patients with ALI [12]. NLRP3 inflammasome activa-
tion in alveolar macrophages leads to the processing of pro-caspase-1
into two lysed subunits named p10 and p20, which can induce the
release of pro-inflammatory cytokines and trigger severe inflammatory
responses [2,13]. However, the association between XBJ’s protection of
lung tissue and NLRP3-mediated pyroptosis remains unclear. miRNAs
can negatively regulate gene expression at the post-transcriptional level
[14] and are substantially implicated in inflammatory lung diseases,
including ALI. For example, miR-181a inhibition protects mice from ALI
[15]. Recent studies have confirmed that miR-181d-5p exerts an anti-
inflammatory role after renal ischemia-reperfusion injury and can
inhibit the expression of inflammatory mediators, thus improving renal
function [16].

SPP1, also known as Osteopontin (OPN), is a coding protein
located in 4q22.1 and is considered to be a key cytokine involved in
immune cell recruitment and expression of type 1 cytokines at
inflammatory sites [17,18]. Current studies have confirmed that
SPP1 is involved in tumor cell progression [19−22]. However, its
underlying mechanism in inflammation-related ALI has not been
fully elucidated.

Here, rat and cellular ALI models were constructed using LPS to
explore the potential mechanism of XBJ to improve ALI. At the
same time, the effects of XBJ on inflammatory response and pyrop-
tosis in ALI were discussed, as well as the mechanism of miR-181d-
5p and SPP1.
Table 1
PCR primer sequences.

Genes PCR primer sequences (5’−3’)

miR-181d-5p Forward: GCTGAACATTCATTGTTGTCG
Reverse: GCAGGGTCCGAGGTATTC

SPP1 (Rat) Forward: TGGATGAACCAAGCGTGGAA
Reverse: TTTGGAACTCGCCTGACTGT

SPP1 (Human) Forward: CACATCCCGAGGAGACACAG
Materials and methods

ALI animal model

This study was approved by the Animal Protection Professional Com-
mittee of Affiliated Danzhou People’s Hospital of Hainan Medical Uni-
versity. Male SPF-grade SD rats (180‒220g) were purchased from the
Animal Experimental Center, Tongji Medical College, Huazhong Univer-
sity of Science and Technology (Wuhan, China). Rats were kept on a
day/night 12/12h cycle with 55% humidity, with free access to water
and food. After one week of adaptive feeding, the rats were randomly
divided into 3 groups (6 rats/group): Control, ALI, and ALI+XBJ. Rats
were first anesthetized by intraperitoneal injection of pentobarbital
sodium at 50 mg/kg, followed by intraperitoneal injection of 10 mg/kg
LPS (Sigma-Aldrich; USA), while rats in the Control group were injected
intraperitoneally with 0.9% normal saline [23]. Three days before
modeling, rats in the ALI+XBJ group were injected with XBJ (4 mL/kg)
twice a day via caudal vein, while rats in the Control and ALI groups
were injected with 0.9% normal saline [24]. All rats were euthanized
12h after LPS injection. Subsequently, the right lung of 3 rats in each
group was ligated, and the left lung was rapidly frozen at -80°C for sub-
sequent RNA, protein, and flow cytometry tests. The remaining right
lung was fixed in 4% paraformaldehyde for histological analysis. From
the remaining 3 rats in each group, lung tissues were weighed first and
then dried at 65°C for 48h to calculate the Wet/Dry (W/D) ratio to esti-
mate pulmonary edema index.
Reverse: GGGCCCAGCTAAAGGTAATGT
U6 Forward: CTCGCTTCGGCAGCACA

Reverse: AACGCTTCACGAATTTGCGT
GAPDH Forward: CACCCACTCCTCCACCTTTG

Reverse: CCACCACCCTGTTGCTGTAG

Note: miR-181d-5p, microRNA-181d-5p; SPP1, Secreted
Phosphoprotein 1; GAPDH, Glyceraldehyde-3-Phosphate
Dehydrogenase.
ELISA

Cell culture supernatant or rat lung tissues were centrifuged at
500 × g at 4°C for 10-min for ELISA. Inflammatory cytokines were
detected using commercial ELISA kits for IL-1β, IL-18, and TNF-α (R&D
System, USA).
2

Cell culture and treatment

BEAS-2B Cell line (ATCC) was cultured in DMEM supplemented with
10% FBS and 1% penicillin/streptomycin in a 37°C incubator with 5%
CO2. XBJ group was pretreated with 2 g/L XBJ (Tianjin Datong New
Pharmaceutical Co., LTD., China) in BEAS-2B cells for 24h [25] and
treated with 1 μg/mL LPS (Sigma-Aldrich) for 4h and then with 5 mM
ATP (A6559, Sigma-Aldrich) for 30 min to induce pyroptosis, while Con-
trol and LPS groups were added with equal amounts of PBS [26]. The
remaining groups were transfected before treatment with XBJ, LPS, and
ATP.

Cell transfection

miR-181d-5p mimic/inhibitor and oe-SPP1, and their corresponding
controls (mimic NC, inhibitor NC, and vector) were synthesized in Gene-
Pharma (Shanghai, China) and transfected into BEAS-2B cells using Lip-
ofectamine 2000 (Invitrogen). The medium was replaced at 8h, and
cells were harvested at 48h to evaluate the transfection efficiency by RT-
qPCR or immunoblotting.

Immunoblotting

Lung tissue and BEAS-2B cells were lysed with RIPA buffers contain-
ing PMSF or phosphatase inhibitors. Protein concentration was detected
using a BCA test kit. The equal-volume proteins were separated by 12%
SDS-PAGE, transferred to PVDF membrane, blocked with 5% skim milk
for 2h, and rinsed with TBST 3 times (10 min/time). Then, NLRP3
(19771-1-AP, Proteintech, USA), Caspase-1 p20 (22915-1-AP, Protein-
tech), ASC (10500-1-AP, Proteintech), GSDMD-N (ab219800, Abcam,
USA), p-p65 (3033, CST), GAPDH (2118, CST), and SPP1 (sc-21742,
Santa Cruz Biotechnology) were separately added to incubate overnight
at 4°C. Then, the HRP conjugate secondary antibody was supplemented
for 1h before visualization of protein bands based on an enhanced
chemiluminescence kit (Vazyme, China).

RT-qPCR

Total RNA was extracted from rat lung tissue and BEAS-2B cells by
Trizol Reagent (Invitrogen), and RNA quality and concentration were
determined by Nanodrop 2000. Reverse transcription of miRNA was
implemented by Taqman®MicroRNA Reverse Transcription kit (Invitro-
gen), while that of mRNA was done by cDNA synthesis kit (Thermo
Fisher Scientific). RT-qPCR assay was performed using the SYBR Premix
Ex TaqTM II kit (RR820A, Takara) and analyzed by Biosystems 7900
thermocycler (Thermo Fisher Scientific). With U6 and GAPDH as the ref-
erence genes, respectively, expression was calculated by the 2−ΔΔCt

method. The primer sequence is shown in Table 1.



Fig. 1. XBJ improves ALI. (A) HE-staining evaluated the morphological changes of lung tissue. (B) TUNEL staining observed the apoptotic cells in lung tissue. (C) Lung
W/D ratio. (D) ELISA measured inflammatory cytokines in lung tissue. (E‒F) Immunoblotting tested p-p65, NLRP3, ASC, caspase-1 p20, and GSDMD-N. Data expressed
as mean ± SD (n = 3). * p < 0.05.
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Flow cytometry

BEAS-2B cells were washed twice with pre-cooled PBS and resus-
pended with 1 mL of 1 × buffer. Then, cells (1 × 106 cells/mL) were
mixed with FLICA® 660 Caspase-1 Assay regent (Immunochemistry
Technologies, USA) at 37°C for 30-min, added with PI for 5-min, and
analyzed using BD FACSAria flow cytometry (BD Company, USA). Cas-
pase-1+/PI+ cells were pyroptosis cells [27].
Luciferase reporter assay

miR-181d-5p and SPP1 binding sites were analyzed in the starbase
3.0 (https://starbase.sysu.edu.cn/). WT-SPP1 and MUT-SPP1 constructs
were produced by inserting the 3′UTR sequences of wild and mutant
SPP1 into the pmirGLO vector (Promega, USA), which were then trans-
fected with miR-181d-5p mimic or mimic NC into BEAS-2B cells using
Lipofectamine 2000 (Invitrogen). Luciferase activity after 48h was then
assessed using a dual luciferase reporter assay kit (Promega) and
recorded on the Synergy 2 Multidetector Microplate Reader (BioTek
Instruments).
HE-staining

The lung tissues were prepared into slices with 5 μm thickness using
a microtome (RM2235, Leica, Germany) after fixation in 4% paraformal-
dehyde for 24h and embedment in paraffin. Then, the tissues were
reacted with hematoxylin (Beyotime, China) for 5‒10 min, rinsed with
running water for 3-min, dyed with eosin (Beyotime) for 1‒2 min, and
viewed using an optical microscope (Olympus).
TUNEL staining

To measure apoptosis, a TUNEL assay was carried out using a com-
mercial kit (Beyotime). Paraffin sections (5 μm) were incubated with 45
μL labeled buffer and 5 μL TdT enzyme solution for 60-min, rinsed
3 times with PBS, stained with DAPI for 5-min, and observed under a
fluorescence microscope (Olympus). Quantification of images was per-
formed with ImageJ software.
Fig. 2. XBJ improves LPS-induced lung cell inflammation and pyroptosis. (A) ELISA m
proteins related to inflammation and pyroptosis. (D) Flow cytometry determined pyro
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RIP assay

Magna RIP Kit (Millipore) was purchased to conduct RIP assay. Cell
lysates were harvested using RIP lysis buffer and combined with mag-
netic beads with Ago2 or IgG antibodies at 4°C for 6h. After elution, the
immunoprecipitates were collected for RT-qPCR analysis.

Statistical analysis

To analyze the data, GraphPad Prism software v8.0 was utilized.
Data were expressed as mean ± Standard Deviation (SD) and collected
from each experiment in replicates. Student’s t-test compared the differ-
ence between the two groups, and one-way ANOVA analyzed that
among multiple groups; p < 0.05 was considered statistically significant.

Results

XBJ improves ALI

LPS inducer was used to establish ALI rat models. Subsequently, HE-
staining evaluated the morphological changes in the lung tissue. ALI rats
showed obvious pathological injury, thickened alveolar wall diaphragm,
shrunk alveolar cavity and inflammatory cells infiltrated in the lung tis-
sue. However, the lung tissue structure of ALI rats pretreated with XBJ
was intact, and the degree of inflammatory cell infiltration was low
(Fig. 1A). Meanwhile, TUNEL staining showed that XBJ reduced the
number of lung tissue apoptosis induced by LPS (Fig. 1B). The lung W/D
ratio was increased in ALI rats, and XBJ improved LPS-induced lung
injury (Fig. 1C). ELISA results demonstrated that XBJ preconditioning
inhibited LPS promotion of inflammatory cytokines IL-1β, IL-18 and
TNF-α in rat lung tissue (Fig. 1D). Meanwhile, immunoblotting assayed
that cellular inflammation (p-p65) and pyroptosis-related proteins
(NLRP3, ASC, caspase-1 p20, and GSDMD-N) were elevated in the lung
tissues of ALI rats, while XBJ pretreatment could inhibit these proteins
(Fig. 1 E, F).

XBJ improves LPS-induced lung cell inflammation and pyroptosis

LPS-induced lung epithelial BEAS-2B cells were also used to simulate
ALI. ELISA results revealed that LPS stimulated the release of
easured IL-1β, IL-18 and TNF-α in cell supernatant. (B‒C) Immunoblotting tested
ptosis. Data expressed as mean ± SD (n = 3). * p < 0.05.

https://starbase.sysu.edu.cn/
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inflammatory cytokines, while XBJ treatment effectively reduced
inflammation in LPS-induced BEAS-2B cells (Fig. 2A). Meanwhile,
immunoblotting determined that XBJ could impair LPS’ promoting
effect on inflammatory and pyroptosis-associated proteins in BEAS-2B
cells (Fig. 2 B, C). Flow cytometry elucidated that the proportion of Cas-
pase-1 and PI-positive cells in LPS-treated BEAS-2B cells was promoted,
while XBJ treatment inhibited apoptosis (Fig. 2D).

miR-181d-5p inhibits LPS-induced inflammatory response and pyroptosis of
lung epithelial cells

miR-181d-5p was abnormally downregulated in ALI rats and BEAS-
2B cells, while XBJ restored its expression pattern (Fig. 3A). Subse-
quently, miR-181d-5p expression was artificially modified in LPS-
induced BEAS-2B cells. In detail, miR-181d-5p mimic was transfected
into LPS-induced BEAS-2B cells, leading to the upregulation of miR-
181d-5p (Fig. 3B). After elevating miR-181d-5p, it was measured
that contents of inflammatory cytokines in the supernatant of cells
were inhibited (Fig. 3C), as well as protein expression of
Fig. 3. XBJ improves LPS-induced lung cell inflammation and pyroptosis. (A) RT-qP
detected miR-181d-5p after transfecting miR-181d-5P mimic into LPS-induced BEAS
Immunoblotting tested proteins related to inflammation and pyroptosis. (F) Flow cyto
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inflammatory and pyroptosis-related proteins (Fig. 3D, E) and apo-
ptosis rate (Fig. 3F).

XBJ elevates miR-181d-5p and improves LPS-induced pyroptosis of lung
epithelial cells

miR-181d-5p was silenced in BEAS-2B cells. RT-qPCR found a
decrease in miR-181d-5p expression after transfection with miR-181d-
5p inhibitor (Fig. 4A). The transfected cells were then treated with XBJ
and LPS. Experimental data presented that XBJ inhibited inflammation
and pyroptosis in LPS-induced BEAS-2B cells, but this phenomenon was
counteracted after inhibiting miR-181d-5p (Fig. 4B, E).

miR-181d-5p targets SPP1

starbase3.0 (https://starbase.sysu.edu.cn/) predicted miR-181d-5p
and SPP1 potential binding sites (Fig. 5A). RIP results showed that miR-
181d-5p and SPP1 proteins were enriched in Ago2 (Fig. 5B). In dual
luciferase reporter experiments, when co-transfected miR-181d-5p
CR analyzed miR-181d-5p in LPS-treated rats and BEAS-2B cells. (B) RT-qPCR
-2B cells. (C) ELISA measured IL-1β, IL-18 and TNF-α in cell supernatant. (D‒E)
metry determined pyroptosis. Data expressed as mean ± SD (n = 3). * p < 0.05.

https://starbase.sysu.edu.cn/


Fig. 4. XBJ upregulates miR-181d-5p and improves LPS-induced pyroptosis of lung epithelial cells. (A) RT-qPCR detected miR-181d-5p in LPS-induced BEAS-2B cells.
(B) ELISA measured IL-1β, IL-18 and TNF-α in cell supernatant. (C‒D) Immunoblotting tested proteins related to inflammation and pyroptosis. (E) Flow cytometry
determined pyroptosis. Data expressed as mean ± SD (n = 3). * p < 0.05.
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mimic and WT-SPP1, the luciferase activity decreased significantly
(Fig. 5C). After transfecting miR-181d-5p mimic or miR-181d-5p inhibi-
tor into BEAS-2B cells, SPP1 expression was suppressed or promoted
(Fig. 5 D, E). Meanwhile, SPP1 was examined to be abnormally
increased in ALI rats and lung epithelial cells, and XBJ inhibited its
expression (Fig. 5F, G).

XBJ upregulates miR-181d-5p and inhibits SPP1 to protect lung epithelial
cells from LPS-induced injuries

The oe-SPP1 was transfected into BEAS-2B cells, which successfully
overexpressed SPP1 in cells (Fig. 6 A, B). Cells transfected with oe-SPP1
6

were treated with XBJ and LPS. Functional experiments noted that over-
expressing SPP1 weakened the inhibition of XBJ on LPS-induced inflam-
mation (Fig. 6 C, D). Meanwhile, increased expression of SPP1
antagonized the inhibition of XBJ on LPS- and ATP-induced pyroptosis
(Fig. 6 E, F).

Discussion

ALI is a respiratory disease caused by multiple factors, which may
develop into acute respiratory distress syndrome [28]. A previous dou-
ble-blind randomized trial demonstrated that XBJ protects lung injury
by reducing neutrophil infiltration by downregulating inflammatory



Fig. 5. SPP1 is mediated by miR-181d-5p. (A) Potential binding sites of miR-181d-5p and SPP1. (B) RIP detected the enrichment of miR-181d-5p and SPP1 in Ago2.
(C) Dual luciferase reporting experiment verified the relationship between miR-181d-5p and SPP1. (D‒E) After transfecting miR-181d-5p mimic or miR-181d-5p inhib-
itor into BEAS-2B cells, RT-qPCR and immunoblotting measured SPP1 expression levels. (F‒G) RT-qPCR and immunoblotting measured SPP1 in ALI rat lung tissues and
BEAS-2B cells. Data expressed as mean ± SD (n = 3). * p < 0.05.
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mediators [29]. However, the protective effect of XBJ on lung function
impairment caused by ALI remains largely unknown. This study sought
to explore the mechanism of XBJ in ALI and eventually confirmed that
XBJ could improve ALI by mediating the miR-181d-5p/SPP1 axis to
inhibit ALI inflammation and pyroptosis.
7

XBJ can ameliorate increased lung permeability and inflammatory
response caused by sepsis [30,31]. This study constructed rat and cellu-
lar ALI models using LPS to investigate XBJ function. XBJ has been
reported to protect septic ALI by inhibiting inflammation and apoptosis
[32]. This is consistent with the present findings that XBJ can inhibit



Fig. 6. XBJ upregulates miR-181d-5p and inhibits SPP1 to protect lung epithelial cells from LPS-induced injuries. oe-SPP1 was transfected into BEAS-2B cells. (A‒B)
RT-qPCR and immunoblotting measured SPP1. (C) ELISA measured IL-1β, IL-18 and TNF-α in cell supernatant. (D‒E) Immunoblotting tested proteins related to inflam-
mation and pyroptosis. (F) Flow cytometry determined pyroptosis. Data expressed as mean ± SD (n = 3). * p < 0.05.
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apoptosis and inflammation induced by ALI. But more importantly, the
study also found that XBJ inhibited NLRP3, ASC, caspase-1, p20, and
GSDMD-N levels, and could reverse LPS promotion of the proportion of
Caspase-1 and PI-positive cells in BEAS-2B cells. Further experiments
confirmed that XBJ could improve ALI by mediating the miR-181d-5p/
SPP1 axis to inhibit ALI inflammatory response and pyroptosis.

In addition, since the discovery of miRNA in 1993, changes in
miRNA expression have been associated with the pathogenesis of
inflammatory lung diseases, making them biomarkers for novel diagno-
sis and treatment [33,34]. miR-181d family suggests importance in
inflammation and cell growth [35]. miR-181d can promote TNF-α
expression [36]. This work explored the role of miR-181d-5p in ALI
inflammation and found that miR-181d-5p was abnormally downregu-
lated in ALI, and restoring miR-181d-5p could inhibit inflammation
caused by ALI. In addition, Liu’s study confirmed that miR-223 specifi-
cally targets NLRP3, thereby inhibiting NLRP3 translation expression
and affecting pyroptosis [37]. Notably, our study also confirmed that
miR-181d-5p inhibited LPS-induced pyroptosis. Subsequently, the study
explored and revealed that silencing miR-181d-5p could counteract the
improvement effect of XBJ on inflammation and pyroptosis of ALI lung
epithelial cells.

MiRNAs negatively regulate gene expression by binding to the 3′UTR
of target genes [38]. Therefore, the study confirmed that miR-181d-5p
8

targeted SPP1. SPP1 is a multifunctional protein expressed at the site of
inflammation. For example, SPP1 is involved in acute and chronic neuri-
tis[39]. and can mediate transfusion-related ALI by stimulating pulmo-
nary neutrophilic accumulation [40]. This study also confirmed that
SPP1 expression was elevated in ALI, and promoting SPP1 could block
the protective effect of XBJ on ALI. That is, SPP1 overexpression
enhanced inflammation and pyroptosis.

Some limitations exist in this study. For example, whether XBJ medi-
ates miR-181d-5p/SPP1 axis to improve ALI was not explored in animal
models of ALI, and the molecular mechanism of SPP1 regulating inflam-
matory response and pyroptosis has not yet been studied.

Conclusion

XBJ improves LPS-induced ALI and inhibits LPS-induced inflamma-
tion and pyroptosis. XBJ is protective for lung cells by upregulating miR-
181d-5p, thereby inhibiting SPP1. Generally speaking, XBJ provides a
new therapeutic target and strategy for the clinical treatment of ALI.

Availability of data and materials
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