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The reversibility of the Carnot Cycle makes it the most efficient thermodynamic cycle to convert energy as
heat into work operating between two thermal reservoirs at different temperatures. The Otto cycle represents an
idealization of the processes in the spark-ignition 4-stroke internal combustion engine operation. Some aspects of
these two crucial thermodynamic cycles will be presented here in a comparative manner. This highlights why the
Carnot Cycle does not offer advantages over the Otto Cycle in the operation of real thermal engines when we
consider the efficiency and work done per cycle dependent on the compression ratio of the cycles.
Keywords: Compression ratio, efficiency, thermodynamic cycles.

A reversibilidade do Ciclo de Carnot faz dele o ciclo termodinâmico de máxima eficiência na trasformação
de calor em trabalho a partir de dois reservatórios térmicos a temperaturas distintas. O ciclo Otto representa
uma idealização dos processos que ocorrem no funcionamento dos motores de combustão interna de 4 tempos
por ignição elétrica. Serão apresentados aqui alguns aspectos dessses dois importantes ciclos termodinâmicos de
maneira comparativa. Com isso, evidencia-se os motivos pelos quais o Ciclo de Carnot não apresenta vantagens
em relação ao Ciclo Otto quando considera-se a dependência da eficiência e do trabalho líquido por ciclo com a
taxa de compressão dos ciclos.
Palavras-chave: Taxa de compressão, eficiência, ciclos termodinâmicos.

1. Introduction

According to the Carnot theorem, any engine operating
between two thermal reservoirs is less efficient than a
thermodynamic cycle operating reversibly between the
same reservoirs [1]. After being introduced to the Carnot
theorem and the Carnot cycle, students often raise the
question about the feasibility of a real Carnot engine
for power generation. The standard answer blames the
technical impediments in implementing the Carnot cycle
(e.g., zero friction, perfect thermal conductivity, heat
transfer through a zero temperature difference, and close
to zero power due to the shortness of adiabatic trans-
formations succeeding slow isothermal transformations).
However, beyond the efficiencies with the same thermal
reservoirs, further comparisons between properties of the
Carnot cycle and other cycles are rarely made to answer
that question.

Thermodynamic cycle efficiencies considering different
shapes in p vs. V diagram have been discussed consider-
ing different aspects until recent years. Most of them
addressed the topic of locating the states where the
heat changes the sign, considering triangle cycles [2],
elliptical cycles [3], linear-parabolic cycles [4], Sadly
Cannot cycles [5], unconventional lobe [6] and even a
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general formalism to treat arbitrary shapes (including
star-shaped and heart-shaped cycles) [7]. Other aspects
beyond the efficiency are also compared for the Carnot
cycle with possible modifications on it [8].

In this work, we intend to complement the answer
about the feasibility of a real Carnot engine beyond
the mentioned technical impediments. The complement
is given by comparing the Carnot cycle with a ther-
modynamic cycle which idealizes the processes in a
spark-ignition 4-stroke internal combustion engine – the
Otto cycle [9]. We revisit some general aspects and
obtain expressions for the efficiency and work per cycle
considering the Carnot cycle in Sec. 2 and the Otto
cycle in Sec. 3. We compare the cycles constraining three
common features between them: the compression ratio in
Sec. 4, the efficiency in Sec. 5 and the thermal reservoirs
in Sec. 6. A concluding discussion of the findings is
offered in Sec. 7.

2. The Carnot Cycle

The Carnot cycle is defined by the four processes
depicted in the p vs. V diagram of Fig. 1. The trans-
formation aC → bC is performed at thermodynamic
equilibrium with a hot thermal reservoir, and cC → dC

is performed at thermodynamic equilibrium with a cold
thermal reservoir. This feature allows us to identify
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Figure 1: Schematic view of a Carnot Cycle. The processes
aC → bC and cC → dC are isothermal transformations. The
processes bC → cC and dC → aC are adiabatic transformations.

aC → bC as an isothermal expansion and cC → dC as
an isothermal contraction. According to the First Law
of Thermodynamics, as the internal energy of the gas
remains unchanged during isothermal processes, the heat
absorbed by the gas during aC → bC is integrally used
to expand it. Likewise, the heat transferred from the gas
to the cold reservoir during cC → dC comes integrally
from the work done by the surroundings on the gas to
contract it.

The transformations bC → cC and dC → aC occur
without any contact with the thermal reservoirs and
could be motivated by the inertial movement of a piston
after each isothermal transformation. This feature allows
us to identify bC → cC as an adiabatic expansion and
dC → aC as an adiabatic contraction (without heat
exchange between the system and the surroundings).
According to the First Law of Thermodynamics, as
there is no heat exchanged, the temperature of the
gas decreases until the temperature of the cold thermal
reservoir along bC → cC . Also, it rises until the temper-
ature of the hot thermal reservoir along dC → aC .

The processes aC → bC and cC → dC are reversible
since they are performed at equilibrium conditions
between the gas and its surroundings. The processes
bC → cC and dC → aC are also reversible since the
entropy of the gas remains unchanged as no heat is trans-
ferred from it to the surroundings. Therefore, the whole
cycle is considered reversible, meaning the universe’s
entropy remains unchanged after the gas completes the
cycle [10, 11]. As a consequence of the Second Law
of Thermodynamics, it is possible to conclude that a
reversible heat engine is the most efficient one operat-
ing between two given thermal reservoirs. Remarkably,
Carnot concluded that before either the First Law or
the Second Law of Thermodynamics had been estab-
lished [1]. Thus, the Carnot efficiency will always be
greater when compared with any other thermodynamic
cycle with maximum and minimum temperatures equal

to that of the hot and cold thermal reservoirs used in a
Carnot Cycle.

The maintenance of temperature of aC → bC and
cC → dC associated with the ideal gas state equation
leads to the following relations

pbC
VbC

= paC
VaC

, (1)

pdC
VdC

= pcC
VcC

. (2)

The First Law of Thermodynamics associated with the
ideal gas state equation leads to the following relations
for the adiabatic transformations bC → cC and dC →
aC :

pbC
V γ

bC
= pcC

V γ
cC

, (3)

TbC
V γ−1

bC
= TcC

V γ−1
cC

, (4)

pdC
V γ

dC
= paC

V γ
aC

, (5)

TdC
V γ−1

dC
= TaC

V γ−1
aC

. (6)

where T is the temperature γ is the adiabatic index
defined by the heat capacity ratio γ = cp/cV . Here
cp is the heat capacity at constant pressure, and cV is
the heat capacity at constant volume. For an ideal gas
cp = cV + R (where R = 8.314 J.mol−1.K−1 is the ideal
gas constant) and cV = fR/2, where f is the number of
degrees of freedom (3 for a monatomic ideal gas, 5 for a
diatomic ideal gas or a gas of linear molecules and 6 for
a polyatomic ideal gas [12, 13]).

By dividing equation (3) by (1), it is possible to find
an expression for the volume of the state bC

V γ−1
bC

=
pcC

V γ
cC

paC
VaC

. (7)

Similarly, by dividing equation (5) by (2), it is possible
to find an expression for the volume of the state dC

V γ−1
dC

=
paC

V γ
aC

pcC
VcC

. (8)

We can relate the ratios VbC
/VaC

and VcC
/VdC

dividing
equation (4) by (6) and recognizing that TbC

= TaC
= Th

and TdC
= TcC

= Tc, where Th is the hot reservoir
temperature and Tc is the cold reservoir temperature.
Thus, we can write

VbC

VaC

= VcC

VdC

. (9)

It is useful to define the compression ratio of the cycle
as the ratio of the largest to smallest volume of the gas.
For the Carnot cycle, we have

rVC
≡ VcC

VaC

. (10)

The relevance of this parameter is rarely discussed for
the Carnot cycle, while it is emphasized in the context
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of many other thermodynamic cycles. The compression
ratio is directly related to the piston displacement
during each stroke as it is proportional to the ratio of
the largest to the smallest volume of the gas in the
cylinder. Therefore, the relation between the Carnot
cycle properties and the compression ratio is essential
to investigate the technical limitations of implementing
this cycle.

We use a sign convention for heat where Q > 0 if
the heat is absorbed by the working gas from the hot
reservoir and Q < 0 if the heat is rejected from the
working gas to the cold reservoir. The heat is transferred
from the hot reservoir to the working gas during the
isothermal expansion aC → bC , which leads to

QinC
= QaCbC

= paC
VaC

ln
(

VbC

VaC

)
. (11)

Similarly, the heat is rejected from the working gas to the
cold reservoir during the isothermal process cC → dC ,
which leads to

QoutC
=| QcCdC

|= pcC
VcC

ln
(

VcC

VdC

)
. (12)

The efficiency of a thermodynamic cycle can be defined
as e ≡ W/Qin, where W is the net work done by the gas
per cycle, given by the First Law of Thermodynamics as
the difference W = Qin −Qout. This leads to the relation

e = 1 − Qout

Qin
. (13)

Substituting equations (11) and (12) into equation (13),
and using the identity expressed in equation (9) we have

eC = 1 − pcC
VcC

paC
VaC

, (14)

in which, by applying the ideal gas state equation in
states cC and aC , it is possible to express eC in terms of
Th and Tc as eC = 1 − Tc/Th as it is better known.

The net work done per cycle is poorly investigated
when introductory physics textbooks address the Carnot
cycle. This quantity is proportional to the power per-
formed by the engine and corresponds to the inner
area of the cycle represented in a p vs. V diagram.
By substituting equations (11) and (12) in W = Qin −
Qout, using the identity expressed in equation (9) and
the equation (7) for the volume VbC

we obtain

WC =
(

paC
VaC

γ − 1

) (
1 − pcC

VcC

paC
VaC

)
ln

(
pcC

V γ
cC

paC
V γ

aC

)
. (15)

By recognizing the expression of Carnot efficiency (14)
in equation (15) and by applying the definition of rVC

expressed in equation (10) it is possible to write

WC

paC
VaC

=
(

eC

γ − 1

)
ln

[
(1 − eC)rγ−1

VC

]
. (16)

There is a non-monotonic dependence of WC on eC in
the equation (16), since WC = 0 for eC = 0 and also
for eC = 1 − r1−γ

VC
. The second case is surprisingly equal

to the Otto cycle efficiency with the same compression
ratio, as we will see in the next session.

We illustrate the non-monotonic dependence of WC

on eC by representing some Carnot cycles of different
efficiencies and the same compression ratio in the p vs. V
diagrams in Fig. 2. There, we fixed rVC

= 10 and
(VaC

, paC
) = (25 mL, 75.36 atm) for all cycles. The pcC

values are determined for each eC using equation (14),
while VbC

and VdC
are determined by equations (7)

and (8), respectively. After that, the values of pbC

and pdC
are determined using equations (1) and (2),

respectively. As we can see, the area inside the cycles
grows as the efficiency becomes greater than zero until
it starts to shrink as the efficiency gets close to eCmax

=
1−r1−γ

VC
∼ 0.6. In the case of eC = 0, the volume expan-

sion and contraction happen along the same isothermal
process. In contrast, in the case of eC = eCmax , the
volume expansion and contraction happen along the
same adiabatic process.

3. The Otto Cycle

The Otto cycle is defined by the four processes depicted
in the p vs. V diagram of Fig. 3. This cycle out-
lines a sequence of thermodynamic processes in a
piston-cylinder system of an idealized spark-ignition
4-stroke internal combustion engine. The transforma-
tions aO → bO and cO → dO are adiabatic processes
and represent the rapid expansion and compression of
the gas into the cylinder by the piston movement. The
transformation dO → aO represents the explosion of the
fuel-air mixture, causing a sudden pressure increase at
a constant volume. The transformation bO → cO repre-
sents the exhaustion of the combustion products, drop-
ping the working gas pressure instantaneously during a
constant volume process. There are also two additional
processes omitted in Fig. 3: an isobaric contraction for
the exhaust of wasting combustion products and an
isobaric expansion at the same pressure for the intake
of the cool fuel-air mixture.

The adiabatic transformations aO → bO and cO → dO

obey the relations:

pbO
V γ

bO
= paO

V γ
aO

, (17)

TbO
V γ−1

bO
= TaO

V γ−1
aO

, (18)

pcO
V γ

cO
= pdO

V γ
dO

, (19)

TcO
V γ−1

cO
= TdO

V γ−1
dO

. (20)

The compression ratio of the Otto Cycle is defined by

rVO
≡ VbO

VaO

≡ VcO

VdO

, (21)
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Figure 2: Examples of Carnot cycles of same compression ratio rVC = 10, working gas with γ = 1.4 and different efficiencies eC .
The efficiencies are (a) eC = 0.05, (b) eC = 0.17, (c) eC = 0.25, (d) eC = 0.41, (e) eC = 0.48 and (f) eC = 0.55.

since VcO
= VbO

and VaO
= VdO

. It is also useful to
define a pressure ratio as

rpO
≡ paO

pdO

, (22)

where it is possible to verify that paO
/pdO

= pbO
/pcO

by
dividing equation (17) by (19). The pressure ratio rpO

is determined by the combustion reaction of the air-fuel
mixture.

The heat is transferred to the working gas during the
isochoric process dO → aO, while the heat is rejected
from the working gas during the isochoric process bO →
cO. The heat exchanged at constant volume is defined as
QV = ncV ∆T , where n is the number of moles, which
can be rewritten as QV = (cV /R)V ∆p by applying the
ideal gas state equation. As a result, it is possible to

write

QinO
= QdOaO

= cV

R
paO

VaO

(
1 − 1

rpO

)
, (23)

QoutO
=| QbOcO

|= cV

R
pbO

VbO

(
1 − 1

rpO

)
. (24)

Substituting equations (23) and (24) into equation (13),
we have

eO = 1 − pbO
VbO

paO
VaO

, (25)

where we can use the relation between aO and bO

expressed by equation (17) and the compression ratio
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Figure 3: Schematic view of an Otto Cycle. The processes aO →
bO and cO → dO are adiabatic transformations. The processes
bO → cO and dO → aO are isochoric transformations.

defined in (21) and write

eO = 1 − 1
rγ−1

VO

. (26)

On the other hand, we can obtain the work done per
Otto cycle by substituting equations (23) and (24) into
the relation W = Qin − Qout. This leads to

WO = cV

R

(
1 − 1

rpO

)
paO

VaO

(
1 − pbO

VbO

paO
VaO

)
. (27)

By recognizing the expression of Otto efficiency (25) in
(27) and using the relation γ = cp/cV , where cp = cV +
R, we can write

WO

paO
VaO

=
(

eO

γ − 1

) (
1 − 1

rpO

)
, (28)

which reveals a monotonic positive dependence of WO

on the parameters rpO
and eO.

4. Carnot Cycle vs. Otto Cycle with
rVC

= rVO

Although the Carnot cycle is the pinnacle of efficiency
when compared to any other thermodynamic cycle oper-
ating within the same limits of temperatures, it may be
useful to investigate how its efficiency compares with the
Otto efficiency when we constrain the compression ratio
as the common parameter. By making rVC

= rVO
= rV

on equation (16) and enforcing the argument inside the
logarithm to be greater than one, we find the condition

eC < 1 − 1
rγ−1

V

=⇒ eC < eO, (29)

i.e., the Carnot efficiency is always lesser than the Otto
efficiency when both cycles have the same compression
ratios.

Figure 4: Work per Carnot cycles WC in units of the highest
energy state paC VaC varying with the efficiency for some values
of rV (distinguished in the legend). The working gas γ = 1.4 is
the same for all cycles.

As indicated in Fig. 2, the work per Carnot cycle
presents a maximum for some efficiency e∗

C within the
range 0 < eC < eO. To highlight this aspect, we show
in Fig. 4 the work done per Carnot cycle varying with
the efficiency for some values of rV . The efficiency is
expressed in units of the Otto cycle efficiency eO relative
to each rV while the work is expressed in units of the
highest energy state paC

VaC
. It is possible to observe

that WC is null for eC = 0 and eC = eO and the
maximum work WCmax

occurs for some efficiency e∗
C

which depends on rV .
The values for e∗

C can be found by making

∂WC

∂eC

∣∣∣∣∣
eC =e∗

C

= 0, (30)

whereby obtaining the derivative, the following expres-
sion needs to be solved

ln
[
(1 − e∗

C)rγ−1
V

]
− e∗

C

1 − e∗
C

= 0. (31)

The above expression cannot be analytically solved for
e∗

C . The solution has to be numerically obtained, and
the dependence of e∗

C on the compression ratio rV of
the Carnot cycle is depicted in Fig. 5. The same graph
shows the Otto efficiencies using equation (26) to verify
that eO is greater than e∗

C for all rV values.
Substituting the values for e∗

C in equation (16), we find
the maximum work done per Carnot cycle relative to
each rV value, which is shown as the solid line of Fig. 6.
To compare, we plot in the same graph the work done
per Otto cycle with different pressure ratios rpO

using
equation (28). The work values are expressed in units
of the highest energy state paC

VaC
, which is the same

for all cycles. It is possible to observe that for rV ≤ 10
we have WO > WCmax for all cases where rpO

> 1.4
(typical values in real spark-ignition 4-strokes internal
combustion engines are 2 < rpO

< 4 and rV ∼ 10 [9]).
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Figure 5: Carnot Cycle efficiencies e∗
C (solid line) that give a

maximum work depending on rV values considering γ = 1.4. In
comparison, we depicted the Otto cycle efficiencies eO (dashed
line) relative to rV values.

Figure 6: Maximum work per Carnot cycles WCmax (solid line)
for different compression ratios rV . In comparison, we plot
the work per Otto cycles (lines distinguished in the legend)
dependence on rV for different pressure ratios rpO . Work values
are expressed in units of the highest energy state paC VaC . The
working gas γ = 1.4 is the same for all cycles.

To illustrate an example of the Carnot cycle and
the Otto cycle with the same compression ratio, we
depicted both with rV = 10 and the Otto cycle with
rpO

= 3 in the p vs. V diagram of Fig. 7. The
Carnot cycle is at maximum work condition. The state
(Va, pa) = (25 mL, 75.36 atm) and the working gas
γ = 1.4 are the same for both cycles. The values of
connection states are described in the figure caption.
According to equation (31), by considering rV = 10, the
maximum work value WCmax is obtained for e∗

C = 0.337.
For the Otto cycle, equation (26) gives an efficiency of
eO = 0.602. The areas inside each cycle indicate that the
work done per Otto cycle is greater than the maximum
work done per Carnot cycle, which is corroborated by
equations (16) and (28) giving WCmax = 82 J and
WO = 191.5 J .

Figure 7: Carnot cycle (solid line) and Otto cycle (dashed
line) for the same compression ratio rV = 10 and working
gas γ = 1.4. The pressure ratio for the Otto Cycle is rpO =
3. The Otto Cycle exhibits an efficiency of eO = 0.602
and a work of WO = 191.5 J . The Carnot Cycle has an
efficiency of e∗

C = 0.337, which gives a maximum value for
the work WCmax = 82 J . For the Otto cycle, we have the
connection states (VbO , pbO ) = (250 mL, 3 atm); (VcO , pcO ) =
(250 mL, 1 atm) and (VdO , pdO ) = (25 mL, 25.12 atm). For
the Carnot cycle we have the connection states (VbC , pbC ) =
(89.64 mL, 21.02 atm); (VcC , pcC ) = (250 mL, 5 atm) and
(VdC , pdC ) = (69.72 mL, 17.93 atm). The state (Va, pa) =
(25 mL, 75.36 atm) is chosen as being the same for both.

5. Carnot Cycle vs. Otto Cycle with
eC = eO

We want to investigate the conditions for the Carnot
cycle to exhibit an efficiency equal to that of the Otto
cycle. Substituting eO given by equation (26) as eC in
the equation (16) and enforcing the argument inside the
logarithm to be greater than one, we find the condition

rVC
> rVO

, (32)

i.e., the compression ratio of the Carnot cycle must be
greater than that of the Otto cycle to both have the same
efficiency. By equaling the right side of equations (14)
and (26) we find the follow additional criteria to be
obeyed

pcC

paC

= 1
rVC

rγ−1
VO

. (33)

In addition, suppose the Carnot cycle is forced to
perform the same work per cycle as the Otto cycle. In
this case, is possible to determine an expression for rVC

by equaling the right sides of equations (16) and (28)
with eC = eO = 1 − r1−γ

VO
. This leads to the relation

rVC
= rVO

exp
[

rpO
− 1

rpO
(γ − 1)

]
. (34)

To illustrate an example of the Carnot cycle and the
Otto cycle with the same efficiency and work per cycle,
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Figure 8: Carnot cycle (solid line) and Otto cycle (dashed line)
for the same efficiency eC = eO = 0.602, work per cycle WC =
WO = 191.5 J and working gas γ = 1.4. The parameters of the
Otto Cycle are the same as used in Fig. 7. The Carnot Cycle
must present rVC = 52.9 to achieve the conditions eC = eO

and WC = WO. For the Carnot cycle we have the connection
states (VbC , pbC ) = (135.28 mL, 13.93 atm); (VcC , pcC ) =
(1326.4 mL, 0.57 atm) and (VdC , pdC ) = (250 mL, 3 atm).
The state (Va, pa) = (25 mL, 75.36 atm) is chosen as being
the same for both.

we depicted both in the p vs. V diagram of Fig. 8. The
state (Va, pa) = (25 mL, 75.36 atm) and the working
gas γ = 1.4 are the same for both cycles. The Otto
cycle is identical to that of Fig. 7, i.e., rVO

= 10,
rpO

= 3 and eO = 0.602. Substituting these values
in equation (34), we find that the Carnot Cycle must
present a compression ratio as great as rVC

= 52.9 to
achieve eC = eO and WC = WO. By using rVC

= 52.9
and rVO

= 10 in equation (33) to obtain pcC
and in

equation (10) to obtain VcC
, we find the minimum energy

state as (VcC
, pcC

) = (1326.4 mL, 0.57 atm).

6. Carnot Cycle vs. Otto Cycle with
TcC

TaC
= TcO

TaO

The most known comparative scenario is when the
Carnot cycle is constrained to operate between the
same extreme temperatures as any other thermodynamic
cycle. In this case, as a consequence of the Second Law of
Thermodynamics, the Carnot efficiency is inexorably the
greatest. However, there is a price to pay in terms of the
Carnot cycle compression ratio when we compare it with
the Otto cycle with the same extreme temperatures.

Considering an ideal gas operated by both cycles, the
relation TcC

/TaC
= TcO

/TaO
leads to

pcC
VcC

paC
VaC

= pcO
VcO

paO
VaO

. (35)

Combining the above relation with equations (19), (21)
and (22) and substituting in equation (14), we can
write the Carnot efficiency in terms of the Otto cycle

parameters with the same extreme temperatures as

eC = 1 − 1
rpO

rγ−1
VO

. (36)

Using the parameters of the Otto cycle depicted in Fig. 7
(rVO

= 10, rpO
= 3 and γ = 1.4), we find a Carnot

efficiency of eC = 0.867. This efficiency is greater than
the Otto efficiency of eO = 0.602, as was expected for
this scenario.

To investigate how large the volume displacement of
the Carnot cycle must be to attain the temperatures sat-
isfying TcC

/TaC
= TcO

/TaO
, we substitute equation (36)

on the work per cycle expressed by equation (16) and
impose the argument inside the logarithm to be greater
than one. This leads to the following condition

rVC
> rVO

r1/(γ−1)
pO

. (37)

This requires rVC
> 155.9 when we want a Carnot Cycle

that operates between the same extreme temperatures
as that of the Otto cycle depicted in Fig. 7 (rVO

= 10,
rpO

= 3 and γ = 1.4).
The compression ratio rVC

= 155.9 and the efficiency
eC = 0.867 leads to a null work per Carnot cycle
according to equation (16) since rVC

must be greater
than that value. Suppose now that the Carnot cycle
is forced to perform the same work per cycle as the
Otto cycle. In that case, it is possible to determine
an expression for rVC

by equaling the right sides of
equations (16) and (28) with eC given by equation (36).
This leads to the relation

rVC
= rVO

r1/(γ−1)
pO

exp
[

(rpO
− 1)(rγ−1

VO
− 1)

(γ − 1)(rpO
rγ−1

VO
− 1)

]
. (38)

In the case of using the parameters of the previous
example (rVO

= 10, rpO
= 3, and γ = 1.4), we find

rVC
= 495.6 if we want a Carnot cycle with the efficiency

eC = 0.867 and work per cycle WC = WO = 191.5 J .
Due to the value of the maximum Carnot Cycle volume
of VcC

= 12389.9 mL significantly higher than VcO
=

250 mL for the Otto cycle with the same extreme
temperatures, both cycles can not be visualized in a p
vs. V diagram with the same scale to be compared.

7. Conclusions

It is a well-known result that the Carnot cycle has
the highest efficiency compared with any other ther-
modynamic cycle constrained to operate between the
same high- and low-temperature thermal reservoirs.
However, comparing the Carnot cycle and the Otto
cycle constrained to operate with the same compression
ratios allows us to conclude that the Otto cycle has
higher efficiency and work per cycle at this configuration.
Furthermore, we observe a non-monotonic dependence
between the work per Carnot cycle and its efficiency. In
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our tests, even in the maximum work per Carnot cycle
scenario, the work per Otto cycle seems higher for most
pressure and compression ratios cases.

For a Carnot cycle with a compression ratio higher
than that of the Otto cycle, we obtained the conditions
for both to present the same work per cycle when
constrained, separately, the same values for the efficien-
cies and the extreme temperatures ratio of both. The
conditions we found indicate a Carnot compression ratio
significantly higher than that of the Otto cycle. This
means a theoretical Carnot engine with a piston stroke
length much larger than an internal combustion engine
with the same work per cycle. In addition, considering
the displacement slowness inherent to the isothermal
transformations, the theoretical Carnot engine would
display fewer revolutions per minute compared to an
internal combustion engine, meaning lower power even
when performing the same work per cycle.
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