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This article explores the differences between frame and coordinate transformations in relativistic theories.
We highlight the key role of tetrad fields in connecting spacetime and frame indices. Using Maxwell’s
electrodynamics as an example, we show that Maxwell’s equations are invariant under coordinate transformations
but exhibit covariant behavior under frame transformations. We also analyze the energy-momentum of an
electromagnetic field in different frames, providing deeper insights into the implications of different frames of

reference and coordinate systems.
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1. Introduction

Contemporary natural philosophy describes observed
phenomena in nature using the usual mathematical
language. From a physical perspective, the motion of
a body is considered the most elementary classical phe-
nomenon. This motion can be quantitatively described
using a ruler or a protractor, combined with a clock, for
measuring distance or angle and time, respectively. To
translate these measurements into an interpretation of
the phenomenon, one must compare the numbers to a
standard position, known as the origin, and a standard
time. Once the origin is established, one can construct a
coordinate system containing three linearly independent
axes. A coordinate system translates measured values
into physical information, e.g., if the position changes
over time, an observer may conclude that they are
measuring motion. However, another observer might
disagree with the first; they might measure motion at a
different rate (velocity) or may not perceive any motion
at all, even when using the same coordinate system.
The previous example illustrates that a coordinate
system alone does not provide enough information to
fully characterize a physical phenomenon; thus, estab-
lishing a frame of reference is necessary. On the one
hand, a coordinate system represents a passive trans-
formation; on the other hand, a reference system rep-
resents an active transformation. An observer employs
a coordinate system and carries along a reference frame
adapted to themselves throughout their trajectory. Ergo,
one needs to specify both the coordinate system used for
measurement and the frame of reference. For instance,
the velocity v of a body is measured using Cartesian
coordinates in a frame of reference denoted as S.
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While we can merge the concepts of the observer and
the frame, referring to the observer as the frame, it
is not feasible to mix the concepts of coordinate and
frame. Coordinates are merely a mathematical tool—a
language used to describe phenomena. The choice of
coordinates does not alter the qualitative description
of a physical phenomenon. For instance, the velocity
of a body can be measured using Cartesian, spherical,
cylindrical, or other coordinate system, yet the existence
of motion is independent of the chosen coordinates.
The distinct natures of coordinates (mathematical) and
frames (physical) underscore that they should be treated
as separate entities and, most importantly, transformed
independently.

The rules governing frame transformations emerge
from the foundational assumptions of a theory. Assum-
ing that the time interval and the length of a body
remain invariant during frame transformations leads us
to the Galilean transformation

t 1 0 0 O t
T —-v 1 0 0 T
U o 0 0 1 0 Y ’ (1)
Z 0 0 0 1 z

where v represents the relative velocity of the frames,
with the assumption of relative motion along the = axis
only. Consequently, the position z(*) as measured by
the frame S can be compared with #(), as measured
in frame S. Newtonian Mechanics (NM) inevitably
arises from adopting these non-symmetrical transforma-
tions . These transformations can be easily extended
to other spatial coordinates. However, this extension
is beyond the scope of this article, as the distinction
between physical and mathematical transformations is
sufficiently demonstrated in the simplest case.
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In textbooks, the Galilean transformations are typi-
cally obtained by constructing two coordinate systems:
one (t,z") specifically adapted to S and another (¢',z'")
correspondingly adapted to S. The transformation rules
are derived by relating the origins of the two coordinate
systems, i. e., ' = x — vt. Albeit the standard text-
book method produces a transformation between frames,
assuming that S carries its coordinate system along the
trajectory, as in (f,fc(i)) = (t’, a:’i), this procedure does
not represent a frame transformation.

If the requirements of invariant time and length
are relaxed, and instead, we assume the velocity of
information propagation as the invariant, we arrive at
a new transformation rule for the frames, specifically,
the symmetrical Lorentz transformations

t vy =By 0 0 t
| | =By v 0 0 T
g | 0 0 1 0 y |’ (2)
Z 0 0 0 1 z

where 8 = v/, v = (1 - ,6’2)71/2 with ¢ being the
speed of light. The same discussion applicable to trans-
formation rule also applies to , indicating that the
transformation between frames can be achieved through
a coordinate transformation between two coordinate sys-
tems tailored to each observer. The transformation is not
merely a translation of the origin but represents a four-
dimensional rotation along the ¢,z plane. Such a proce-
dure is adopted in several textbooks [IH4]. The intrinsic
relation between time and spatial quantities in high-
lights the necessity of constructing a pseudo-Euclidean,
fictional, four-dimensional space, called spacetime [5].
Upon adopting transformation rule (2|), one arrives at
Relativistic Mechanics (RM).

In both theories, we can alter coordinates in the same
way, since coordinate transformation represents not a
physical reality but a mathematical procedure. However,
altering the method of changing frames necessitates a
shift in theories. Although it may appear trivial, the
rigor in distinguishing between coordinate and frame
transformations in NM and RM becomes critical. Prob-
lems arise when these same procedures are applied in
General Relativity (GR), particularly when the restric-
tion of inertial frames is relaxed—for example, when
considering accelerated frames in relativistic theories like
Maxwell’s Electrodynamics (ME).

Since the birth of GR, modern gravitational theories
have shifted from describing the interactions between
massive bodies by means of a gravitational force to
employing geometrical descriptions of gravity. When
constructing a geometrical theory of gravity, we must
choose a geometry in which to establish the theory. GR is
based on (pseudo-) Riemannian geometry, within which
the existence of gravitational effects in spacetime is
characterized by the presence of non-trivial Riemannian
geometry, namely, a non-vanishing curvature tensor.
Thus, the presence of the curvature tensor directly
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indicates the presence of a gravitational field. The geo-
metrical description of spacetime is achieved by means
of the square infinitesimal distance (interval) between
two neighboring points. To evaluate such a distance,
localizing these points with a coordinate system is
necessary, meaning a choice of coordinate system is
crucial for characterizing the geometry. Computing two
distinct intervals may involve either the same spacetime
described in two different coordinate systems or two
entirely distinct spacetimes. Consequently, coordinates
hold great significance in GR, and confusing coordinates
with frame transformations can result in numerous
misconceptions.

In this paper, we aim to clearly and formally distin-
guish between coordinates and frame transformations
in physical theories, a task presently unaddressed in
the literature to our knowledge. We begin in section
by examining how tensors can be transformed between
coordinate systems and how tensors are defined from
their transformation rule. Additionally, we present the
generalization of differential operators for an arbitrary
coordinate system. In section [3] we distinguish between
spacetime and frame indices and introduce the tetrad
fields as projectors of spacetime quantities into frames.
With the distinction between frames and coordinate
transformations firmly established, in section [ we
illustrate this distinction within ME. We demonstrate
the covariance of the field equations of the theory
when switching between frames without resorting to
coordinate transformations. Subsequent to the analysis,
we detail how to properly project the energy-momentum
tensor of the electromagnetic field into a frame. Finally,
in section [b| we offer our conclusions.

Throughout this article, we employ the following
notation. We denote spacetime indices with Greek letters
W, v, ..., ranging from 0 to 3. Frame indices are indicated
by Latin letters from the beginning of the alphabet, such
as a,b, ..., and they range from (0) to (3). When two
identical contracted indices appear, it signifies summa-

3

tion, e.g., x¥x, = Zm“xu. We use primes to denote
n=0

distinct coordinates and tildes to distinguish between

different frames.

2. Coordinate Transformations

Physical laws represent relations between physical quan-
tities. In general, the positions of particles in time
and space are chosen as the fundamental quantities.
We can write Newton’s Second Law in a specific basis
{éh é27 éS} as

F= m(alél +a%éy + agég) =ma'é;, (3)
where i = 1,2, 3. In Cartesian coordinates, the basis are
{&;} = {#,9, 2} and we may write (3 as

ﬁ = m(a;ci:+ayﬁ+az5)7 (4)
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where ag y . = a'?3. In cylindrical coordinates, the basis
are {&;} = {p, ¢, 2} and we may write as

ﬁ:m(apﬁ+a¢q3+a22). (5)

While the components in the two coordinate systems
differ, the underlying equations of motion remain the
same. Let us consider an example of a motion where
ap=1and ag =0 = a,. From , we have

—

F =mp. (6)
Given that p = cos ¢Z + sin ¢g, it follows that
F= m( cos ¢& + sin ¢7). (7)

By identifying cos ¢ = a, and sin ¢ = a,,, we recover .

We may write Newton’s Second Law in many coor-
dinate systems, but in all cases, the physical behavior
remains unchanged, that is, physical laws are invariant
under coordinate transformations. We can eliminate the
dependence of the coordinate system in our notation by
expressing it in a vector form as

F =ma. (8)

The vector form is unique, since one does not
need to specify the coordinate system. This observation
occurs because vectors are geometrical entities exist-
ing independently of any coordinate system. Ergo, it
is convenient to express physical laws by means of
vectors and other tensors. The process of attributing
coordinates to physical reality in order to describe it
defines a mathematical quantity known as manifold. In
NM, the manifold is represented by a three-dimensional
FEuclidean space. Thus, utilizing vectors in the descrip-
tion of physical laws extends their applicability to any
coordinate system within this manifold.

The disentangled nature of NM between space and
time allows the construction of three-dimensional vectors
¥ to describe the observed physical quantities. However,
due to the relativistic nature of RM and ME, it is
necessary to consider transformations in both time and
space. Therefore, adopting Minkowski’s approach, which
utilizes a non-Euclidean manifold, enables the expression
of relativistic quantities by means of 4-vectors v, where
the u = 0 component represents a distance derived from
time multiplied by ¢, while the components p = ¢ =
1,2, 3 correspond to the usual spatial ones.

We may represent a four-vector in a basis € as

v =v"¢, =v,é", 9)

where v* and v, are distinct representations of the
components of v. In what follows, we shall refer to the
components of the vectors as the vector itself. We can
separate the temporal and spacial components as

v = {0, 0"} = {00, 01, 0%, 03
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In order to properly define 4-vectors (or any vector of
any dimension) we shall consider the transformation rule
of its components between distinct basis. Let us consider
two coordinate systems z# and z’#. Under coordinate
transformations, the quantities that transform according
to

ox'*

/
v'H

are known as contravariant components, while those that
transform as

Oox”
U:" = W'Dy (].1)

are covariant components. The transformation rules
and can be used to define four-vectors, i.e., a
four-vector v* is defined as something that transforms
according to .

By definition, scalar quantities have no indices. There-
fore, we can define a scalar ® as a quantity that
transforms between two coordinate systems according
to

O’ (2'H) = P(xM).

This means they are invariant under coordinate trans-
formations.

Vectors are tensors of rank 1, just as scalars are tensors
of rank 0. We can generalize the transformation rule (10))
and define tensors of rank 2, T#", which are entities that
transform as

T _ oz’ ax”’Taﬂ

T Oz OB (12)

Following this procedure, we define the transformation
rule for an arbitrary tensor as

ox'#
orr  Ox* dxle

oz’ ox" dx?
" 9z'B T 5o (13)

T a...f —

It is important to note that while a tensor of rank N
possesses N indices, not all quantities with indices are
tensors. To be considered a tensor, a quantity must
transform as shown in equation . When the indices
of a tensor can be permuted without changing its value,
as in TH” = T"F_ the tensor is said to be symmetrical;
if permuting the indices results in the opposite value, as
in THY = —T"F it is termed antisymmetric.

Tensors, being geometric entities, exist independently
of coordinates. When we describe measurable physical
quantities as tensors and formulate physical laws in a
tensorial framework, they achieve covariance under coor-
dinate transformations, rendering them ideal for describ-
ing natural phenomena. A wide number of tensors hold
significant roles in the realm of physics. These include
tensors that represent fundamental physical quantities,
such as the stress-energy tensor, the inertia tensor, and
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the Faraday tensor. Others, such as the Kronecker delta[T]
0 and the Levi—CiVit eBuv pseudo—tenso serve as
critical tools for mathematical manipulation. Beyond
their mathematical utility, tensors like the metric tensor
hold not only mathematical significance but also convey
valuable physical information in GR.

2.1. The metric tensor

In equation @, we represented the vector using both
its covariant and contravariant components. The specific
form chosen to represent a vector does not affect its
inherent properties, but having the capability to trans-
form between these forms is crucial.

There are two ways to represent the square of v. First,
we can evaluate the sum of the squares of its components

v-v =ty (14)
Second, we can use @ as
v-v=u0vlv"e,é,. (15)
By comparing and , we can see that
Uy = guuvyv

where we define the tensor g,, = €,¢é,. The symmetric
tensor g,,,, is known as the metric tensor. This tensor pos-
sesses ten independent components and can be employed
to raise and lower indices in other tensors. For example,
™, A= guagVBTa A,

The spacetime interval, denoted as ds?, is a corner-
stone of the theory of relativity, serving as a measure of
separation between two points in spacetime. However,
the exact form of this interval varies depending on the
geometry of the spacetime being considered. The expres-
sion ds* = dxtdz, represents a general formulation
applicable in various physical contexts. The introduction
of the metric tensor enables us to raise the second index
of ds?, thus resulting in

ds® = g drtdz”. (16)

The metric tensor is more than a mathematical con-
struct; it offers crucial insights into the structure of
spacetime within a given coordinate system. In the
Cartesian coordinates of Minkowski spacetime, the
metric tensor assumes the diagonal form g, =
diag(—1,1,1,1).

1 The Kronecker delta is represented by the identity matrix,
denoted as d), with 6/ = diag(1,1,1,1) in four dimensions. It
yields a value of 1 if 4 = v and 0 if u # v. Consequently, 6, A,
simplifies to A, .

2 The Levi-Civita pseudo-tensor is entirely antisymmetric. It yields
a value of 1 if afur = 0,1,2,3 or any even permutation, —1 for
an odd permutation, and 0 if at least two indices repeat.

3 A pseudo-tensor behaves as a tensor in transformations but
yields a negative sign in the reverse transformation.
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2.2. Tensorial calculus

By choosing to represent physical quantities as tensors,
one embraces a formalism that is independent from any
specific coordinate system. This mathematical approach
is in harmony with the fundamental principle of rela-
tivistic physics, which dictates that physical laws should
remain consistent regardless of the chosen coordinates.
Tensors provide us with this desired covariance under
coordinate transformations.

However, physical laws often involve the differentia-
tion of tensors. In the pursuit of a consistent and univer-
sally applicable framework, these derivatives must also
be tensors. In other words, the fundamental requirement
is that the derivatives of tensors, representing the rates
of change of physical quantities, should transform covari-
antly under coordinate transformations. This covariant
transformation property ensures that the mathematical
representation of physical laws remains consistent and
meaningful across various coordinate systems, thereby
reflecting the underlying physical reality and its inherent
invariance.

Considering a rank 1 tensor A*, which is a four-vector,
its derivative transforms as

oA = dA™ g™ 8z? 9A~ 8zt 9P
v - Oz Oz~ Ox'v dxf  Ox*OxP Oz’

The first term on the RHS of behaves as expected
for a tensor transformation. However, the presence of the
second term on the RHS indicates that the derivative of a
tensor is not a tensor. Therefore, we must define another
derivative by introducing a non-tensor term I'* uv that
transforms as

_ dx® oz” 9z 7 &z oz 9z”
= ox'm oz 9z P 9z°0xP dx'm dxv

With the aid of definition , we can define the

covariant derivative of contravariant components as

(17)

PN
| R

(18)

V,AH = 9, A* + TH AN
and of the covariant components as
V,A, =04, — r Ay,

The non-tensorial quantity that transforms as described
in is known as the affine connection. The affine
connection plays a crucial role in differential geometry
and provides a formalism for understanding how the
components of vectors change when we transport them
through space. In the realm of differential geometry, it’s
important to recognize that vectors exist in a manner
independent of the coordinate system in which they
are expressed. Vectors are mathematical entities with
components that can be defined in various coordi-
nate systems, including Cartesian, polar, and others.
The transformation of vectors between these coordinate
systems is governed by the affine connection, which
captures the variation of vector components with respect
to changes in the coordinate basis. For instance, consider
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a plane, and imagine transporting a vector between two
points. In a Cartesian coordinate system, the compo-
nents of the vector remain unaltered during this process.
This is a reflection of the fact that Cartesian basis
vectors retain their direction and they do not change
as we move through space. In contrast, when working
in a polar coordinate system, the situation is different.
The polar basis vectors change direction relative to the
Cartesian ones as we transport the vector. Consequently,
the components of the vector in polar coordinates differ
from those in Cartesian coordinates due to this change
in basis vectors’ orientation.

The covariant derivative can also be expressed as a
directional derivative, along the tangent vector u” =
dz¥ /dr field, as

D A#
dr

=u"V, A",

where 7 is an affine parameteIﬂ The term “affine”
suggests that this quantity can be expressed linearly
or proportionally along the curve, and its selection can
simplify the study of the curve’s properties., e.g., the
proper time of the observer or any linear transformation
of it.

We can generalize to tensors of higher order. For
each contravariant component of the tensor, an affine
connection is added, and for each covariant component,
a connection is subtracted. For example, in the case of
a tensor of rank 2,

VAT = 95TH +TH TV +TV \TH. (19)

When we permute the lower indices of the connection
and subtract one from another, we obtain the torsion
tensor

A — T A
T ;w:F ;w_r v

of the manifold.

When developing a geometric theory, a fundamental
choice involves determining the geometry of spacetime.
If we choose a manifold as having metricity, i.e.,

V/\gm/ = a)\guu - uXGyy — r vAGuy = 0, (20)

we can cyclically permute the indices in , combine
the three resulting equations, and express the Christoffel
symbols as

o 1
FAW:F’\W—i(Tw’\—i—Tyku—kT’\w). (21)

If we choose a geometry with a zero torsion tensor, i.e.,
U uwv = 0, the affine connection can be expressed as

1
INES ig)w (Opgyv + Ovguy — Oy9uv) (22)

4 An affine parameter is a quantity that allows for the parametriza-
tion or description of a curve or trajectory in a particular manner.
It can be a measure of distance, time, or any other quantity that
varies along the trajectory.
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where the components of the affine connection, denoted
as I uv» hold particular significance and are commonly
referred to as Christoffel symbols.

A noteworthy point to consider is that when we
have a manifold characterized by metricity, meaning the
condition Vg, = 0, and a vanishing torsion tensor, i.e.,
T ., = 0, we are dealing with a Riemannian manifold.
Riemannian manifolds, with their metric structure and
absence of torsion, provide the basis for the spacetime
geometry in the framework of General Relativity (GR).
This choice of geometry is fundamental in the context of
gravitational physics, as it underlies Einstein’s theory of
gravity, where the curvature of spacetime is described by
the metric tensor and governed by the equations of GR.
The Christoffel symbols, derived from this geometric
framework, are a key component in formulating the
geodesic equations that describe the motion of particles
and test bodies in gravitational fields.

3. Frame Transformations

A frame is a system employed by an observer to
quantify physical quantities accurately. These quantities
are represented by tensors, and to attribute a physical
interpretation to them, they must be projected into a
specific frame. Tensors are defined within a coordinate
system, and by themselves, they lack intrinsic physical
significance until projected into a frame. Consequently,
frames possess physical properties, whereas coordinates
do not.

As we transition between different frames, it is rea-
sonable to anticipate transformations affecting physical
quantities. Thus, when measuring a physical quantity,
it is imperative to specify the frame from which it was
measured. This emphasis on frame specification under-
scores the intricate relationship between the observer’s
chosen frame and the accurate description of physical
phenomena, emphasizing the crucial role that frames
play in the realm of physics.

Let us consider an observer who carries with them a
dedicated coordinate system in which they are always
positioned at the origin. Physical quantities measured
by this observer are denoted with Latin letters from the
beginning of the alphabet, e.g., the observer measures
the velocity as v* = {v(@, 01 v2 () for a particle
whose four-velocity is represented by the tensor v* =
{09, vl 9% v3}. When this observer measures the four-
velocity of the particle, he projects it into his own
frame as

a a
vt =e® oM, (23)
where the quantities e® ,, are know as tetrads. Tetrads
possess two indices: one Greek and one Latin. The Greek
index transforms as a four-vector under coordinate
transformations, i.e.,

ox”

!/
Cau = wealj, (24)
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xO

x3

Figure 1: Instantaneous Rest Frame (IRF) at an event P on the
worldline C. For visualization, the other two spatial dimensions
were omitted.

while the Latin index does not change when we change
the coordinate system. The set of tetrads consists of four
4-vectors {e(® , e e B 1 in spacetime. Col-
lectively, these tetrads establish the Instantaneous Rest
Frame (IRF) of an observer moving along a worldline C
represented by z#(7) in spacetime, where 7 serves as an
affine parameter, as can be seen in Figure [I} Observa-
tions recorded at event P correspond to measurements
conducted within the IRF.

The observer remains perpetually at rest within the
IRF, which implies that their 4-velocity u* must be
parallel to e(g),". Consequently,

ut =ceq)". (25)
From , we can see that if e, = &f, the 4-
acceleration reads
Dut D
- = =0 26
“ dr “dr ’ (26)

i.e., the observer (and e®,) is adapted to a frame that
is at rest, as indicated by the vanishing 4-acceleration.

The spacetime index in the tetrads transforms as a
4-vector, and we can raise and lower it using the metric
tensor, i.e.,

€ = gure®™. (27)

By multiplying both sides of by €4, and noticing
that eq,e® = 6, we arrive at

e’ ar = Guv- (28)

As a result, the metric tensor can be determined through
the tetrads. The tetrads, represented by e®,, carry
valuable information about the spacetime’s geometry
in which physical phenomena occur. They also contain
kinematic information about the observer who measures
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these physical quantities. In essence, the measurement
results are the outcome of projecting spacetime quan-
tities into physical quantities through the utilization of
tetrads, underscoring the integral role tetrads play in
connecting spacetime geometry and the measurements
of physical phenomena.

The spacetime index in the tetrads undergoes trans-
formation as specified in (24). The frame index, however,
must undergo a transformation specific to frames. When
we establish a frame transformation rule, we essentially
choose a set of theories. In the case of selecting the
Lorentz transformation, a consequence of the Principle
of Relativity, we enter into the realm of relativistic
theories, such as the RM and ME. Therefore, when
we confine ourselves to the Lorentz transformation, the
frame index of the tetrads, along with other frame-
related quantities, transforms between frames as

&%= A"pe’ (29)

where, for a transformation along the z(!) axis, the
Lorentz transformation matrix A®; can be expressed as

v =By 0 0
A A B
0 0 0 1
Hence, for a 4-vector, we transform frames as
7% = A% b, (31)

and for coordinate transformations, we use the equa-
tion .

The clear distinction and autonomy of frame trans-
formations and coordinate transformations enable us
to perform these transformations independently. To
illustrate, let us consider a rank 2 tensor with one
index projected into a frame, i.e., T*. We can inde-
pendently transform the frame T9% = A®,T% the
coordinates T7%H %ﬁr T, or both simultaneously
Tan = %A“ »T%. This independence allows us to
address various scenarios effectively. For instance, it
allows us to study electromagnetic radiation emitted by
an accelerated source in two different frames within the
same coordinate system, as explored in reference [6].
Similarly, it facilitates the analysis of gravitational
energy flux in the context of a propagating accelerated
gravitational bubble of Alcubierre spacetime from both
a co-moving and a static frame, all within the same
coordinate system, as examined in reference [7].

As a simple example, let us explore two ways in which
an observer measures the velocity 7%, represented by the
4-vector v*, of a particle. The first method is:

1. Project v* into the IRF of the particle: v® = e® Ot

2. Transform from the particle’s frame into the
observer’s frame: 9% = A% yob.
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The other possibility is

1. Transform the tetrads: ¢, = A% ,eb ,,

2. Project the 4-velocity directly into the frame of the
observer: 9% = € ,vH.

In both cases, the coordinates remain unchanged. In the
next section, we will explore a more complex example
using the physical quantities of ME.

4. Maxwell’s Theory in an Arbitrary
Inertial Frame

Maxwell’s electrodynamics serves as the framework
through which we comprehend the interaction between
electric charges and the electromagnetic field. In this
context, the actions of a charge ¢; on another charge
i mamfest through the presence of an electric field
E or a magnetic field B depending on the frame of
reference. Classically, this interplay can be thought as
being initiated by the source charge g1, which generates
a field that subsequently exerts its influence on the test
charge ¢s.

The classical electromagnetic field can be described
mathematically in terms of two non-physical potentials:
the scalar potential ¢ and the vector potential A. These
potentials are fundamental components of the electro-
magnetic field and are indispensable in elucidating the
dynamics and interactions of electric charges with the
field. They serve as intermediaries between the source
charges and the resultant electromagnetic effects and can
be written as
— Vo — 9,4,
V x A.

tm @1

In any given frame, the source of the electromagnetic
field can be accurately represented as comprising two
essential components: a charge density p and a surface
current density J. The charge density p conveys the
distribution of electric charge within the source, while
the surface current density J delineates the flow of
electrical currents along the source’s surface.

From the scalar potential ¢ and the vector potential /_f,
we can construct an entity known as the 4-potential.
This 4-potential, denoted as A*, encapsulates both the
temporal and spatial aspects of the potentials in a
unified framework. By combining these potentials into
a single 4-potential, we describe the electromagnetic
phenomena in tensorial equations. The 4-potential is
defined as

"= (®/c, A). (32)
Additionally, we can define a 4-current density, denoted

as j#, which complements the 4-potential. The 4-current
density is a mathematical construct that describes the
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flow of electric charge in both the temporal and spatial
dimensions of spacetime. The 4-current is defined as

"= (pe. ). (33)

From the 4-potential, we can derive a rank-2 antisym-
metric tensor, denoted as F'*¥. This tensor captures the
essence of the electromagnetic field by encapsulating
both the electric and magnetic field components in a
compact and elegant mathematical form. The antisym-
metry of this tensor is a fundamental property that
reflects the intrinsic relationship between electric and
magnetic fields in electromagnetism. This tensor is called
Faraday tensor and can be represented as

F.=V,A, —-V,A,. (34)
In Cartesian coordinates, the Faraday tensor is given by
0 E./c Ey/c E./c
| -Es/c O -B, B,
Fuw = —-E,/c B, 0 —B, (35)

—-E.Jc -B, B, 0

From the Faraday tensor, we define the dual tensor,
also known as the electromagnetic dual or Hodge dual
tensor. The dual tensor is a fundamental mathematical
construct that encodes the duality between electric and
magnetic fields in electromagnetism. It can be obtained
from

FH = %e”mﬁFaﬁ, (36)
where €78 is the Levi-Civita pseudo-tensor.

In a given frame, the electric and magnetic fields can
be determined by projecting the Faraday tensor into
that frame. In order to illustrate this concept, consider a
frame denoted as S that exclusively measures an electric
field component along the z(2) direction. In this frame,
we can express the electric field as

Ey = CF(O)(Q) = 06(0) #6(2) VFlw. (37)

Therefore, as e, #* = 0¥ in this frame,

0 0 Eyc 0

0 0 0 0
Fw=1_Eg,/c 0 0 o (38)

0 0 0 0

In another frame denoted as S, which is moving with
a constant velocity v relative to frame S along the z
direction, the electric field can be determined through
Lorentz transformations. Specifically, the components of
the Faraday tensor in frame S can be calculated as

Fop = Ay DN, @ Fgy 2

0 0 E,/jc 0
0 0 vEy/c* 0
=7 —Ey/c v —E,/c? 0 0
0 0 0 0
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In this frame, the observer measures an electric
field £, = ~vE, and also observes a magnetic field

B, = —”c—b;/ It is important to note that the same
coordinate system is employed in both frames, meaning
that the transformation of the electromagnetic field
between frames does not alter the coordinates. This
transformation of frames serves to modify the observer’s
“physical perception” of the quantities, as one observer
measures only an electric field, while another measures
both electric and magnetic fields, showcasing the impact
of the observer’s relative motion on their observations.

Distinctly, we can transform the Faraday tensor
between coordinate systems without affecting the frame.
Let us consider two different sets of spatial coor-
dinates: the usual Cartesian coordinates, denoted as
= (ct,z,y, z), and the typical cylindrical coordinates,
denoted as z'** = (ct,p,d,z), where £ = pcos¢d and
y = psin¢. The Faraday tensor represented in the z#
coordinates can be converted to the z'# coordinates
using the transformation rule defined in equation .
The resulting transformed tensor is given by

;o 0zY 0x?
pr 8‘%/# ax/V 02
0 singE,/c pcospE,/c 0
| —sineE, 0 0 0
| —pcosoE,/c 0 0 0
0 0 0 0
(39)

In the above example, we performed a coordinate trans-
formation that did not involve changing the frame. In the
new coordinate system, the components E, = ¢ F” o1 and
Ey=cF 02 are non-zero, but the “physical perception”
remains unaltered, i.e., there is still only an electric field
present.

4.1. Maxwell’s equations

The dynamics of the electromagnetic field, in the pres-
ence of a source, can be determined using the variational
principle. Specifically, this approach yields the form of
the Faraday tensor given a four-current.

The Lagrangian of a physical system is an invariant
function of the system’s quantities. Out of the Faraday
tensor and its dual , we can construct two
invariants: the scalar F**F),, and the pseudo-scalar
FH F,,. Hence, the most simple Lagrangian densities we
can construct are of second order in the Faraday tensor.
If we choose the Lagrangian densities

1 )
L= ZlewF’“’ + ko j1 A, (40)
Lo = F" Fy, (41)

we obtain Maxwell’s theory. Notice that the source
must be incorporated into the Lagrangian in a way
that couples it with the field. The most straightforward

coupling is through the scalar j*A,, which must be
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combined with another scalar. Another possibility is to
consider the invariant A*A,, but this would result in a
different theory, known as the Proca theory [8].

By varying the Lagrangian density with respect
to A,, disregarding the surface term and applying
Hamilton’s principle, we obtain the tensorial field
equation

VuF" = poj”, (42)

where po = ko/ky1. Applying the same process to the
Lagrangian density , we obtain

€u PV FM =0, (43)

The set of equations and constitutes the field
equations of Maxwell’s theory, commonly referred to as
Maxwell’s equations.

In both equations and , we have only one free
index, with the others being summation indices. Ergo,
the validity of Maxwell’s equations, as measured by an
observer, can be obtained by projecting the free index
into a frame. Let us turn our attention to equation .
Projecting it into a frame, we obtain

e VVH(F‘“’) =poe”,j" = V, ' = ug j*, (44)

where we assumed V,e?, = (ﬂ In another inertial
frame, the equations can be obtained by performing a
Lorentz transformation on both sides, i.e.,

AV FP = g A" 50 = YV, FH = 1 57 (45)

By comparing equations and , we observe
that Maxwell’s equations transform covariantly under
frame transformations. This means that if one inertial
observer determines Maxwell’s equations to be valid,
then all inertial observers will reach the same conclusion.
This covariant transformation eliminates the need for
a privileged frame in the context of ME. It is impor-
tant to note that in demonstrating the covariance of
Maxwell’s equations, we did not resort to a coordinate
transformation. Additionally, both observers S and S
verify the validity of the motion equations within the
same coordinate system.

When writing Maxwell’s equations as and ,
we didn’t specify the coordinate system. We can choose
to work in a specific coordinate system if we wish. For
example, in Cartesian coordinates, where R w =0, we
have

0 F™ = g j. (46)

4 The covariant derivative of the tetrads is a mathematical concept
that involves not only a connection related to the spacetime index
but also a connection associated with the transformations of the
basis, known as the spin connection denoted by wu,“b. The detailed
exploration of these connections and their properties is a topic
that falls outside the scope of this article. The inclusion of these
connections would require a more in-depth discussion of differential
geometry.
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Alternatively, in cylindrical coordinates, we can evalu-
ate the metric tensor in these coordinates using (13)),
resulting in

1 0 0 0
Oz OxP 0 -1 0 0

G = o 9 = o 0 2 0|0 WD
0 0 0 -1

where go3 = diag(l,—1,—1,—1). From and ,

we can evaluate the non-zero components of I'* uv aS

I 22 = —p, (48)
M =1/p. (49)

Using definition and the results from equations
and , we can express Maxwell’s equations in cylin-
drical spatial coordinates as

1
O ™M + ;FQ" =p0J", (50)

where we used the fact that I ;MF,M = 0. In both
cases, and , we did not specify the frame.
We can project both equations on any frame.

Equations and represent the field equations
in two distinct frames, while equations and
represent them in two distinct coordinate systems. These
different forms and transformations are independent of
each other, illustrating the versatility and independence
of frame transformations and coordinate system choices
in describing physical phenomena.

4.2. Energy-momentum tensor

When dealing with a physical field such as the electro-
magnetic field, it is essential to recognize that the field
possesses attributes like energy, momentum, and angular
momentum that can be transferred to or from particles.
To work effectively with a field, it is convenient to define
an energy density, as the field is distributed throughout
space. This energy (and momentum) of the field can be
calculated by performing a spatial integration over the
region of interest. In other words, we can evaluate the
local energy of an electromagnetic field within a specific
region, and also determine its total global energy by
integrating over the entire three-dimensional space.

The energy density and momentum density of a
field are encapsulated within a rank-2 tensor known as
the energy-momentum tensor. The energy-momentum
tensor is defined by its conservation along a three-
dimensional surface with respect to time. Consider the
action for the pure electromagnetic field, i.e., without a
source, given by

S:/eﬂldx4, (51)

where e is the determinant of the tetrad field. We can
write the determinant of the tetrads as e = /—g,
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where g is the determinant of the metric tensor. Since
the action is a scalar, it remains unchanged when
we perform coordinate transformations, i.e., §5/Je* =
0. In equation , two quantities contribute to the
variation: the tetrads ey, and the 4-potential A*. The
variation with respect to the 4-potential is zero, a
consequence of the equations of motion. Therefore, our
concern lies in the variation with respect to the tetrads.
By varying with respect to e,,, we obtain

_ d(eLy) (0e L)
55—/ ( Dea _8”a(ayeau>>5ea“dm4’ (52

where we have integrated by parts and dismissed the
surface term. We may define the quantity

1 6(6 El) (66 El)
2 e = 9,
2 ¢ Deay ? 0(Fean) (53)
and rewrite as
1
38 =3 / T Seq, dxt. (54)

By writing T%de,,, = %(T‘“‘éw + T‘“’é(w), we can

easily show that T%de,, = 3T" e, if we assume
the tensor in is symmetrical, i.e., TH = T"#. Tt is
possible to demonstrate (see §94 of [5]) that if we assume
65 =0, then

/eT‘“’(iqm,dﬂlc4 =0.
This implies V, (e T#") = 0. Ergo,
V., (eT™) =0, (55)

where, again, we have used the fact that V,eq, = 0.
We can integrate over an arbitrary three-volume V'
as

/vy(eTW)dV:/vo(eTaO)dv
14 Vv

+ /V Vi(eT*)dV =0.  (56)

Using the divergence theorem to the term containing
V,; T, we may write as

Vo / eTdV = — 7{ dS;e T, (57)
1%
where dS; is the surface element orthogonal to the 14
direction of the closed surface encompassing volume V.
By choosing the surface term at infinity, the RHS can
be made to vanish and we arrive at a quantity

P = / eTdV (58)
14

that is conserved in time. In physics, we identify a
4-vector conserved in time as the energy-momentum
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4-vector of a physical system. The quantity referred to in
equation represents the energy-momentum tensor.
Within this tensor, the component T(9° corresponds to
the energy density, 7" represents the momentum den-
sity in the i-th direction, and 7?7 describes the elements
of the stress-energy tensor. We note that the energy-
momentum tensor can exhibit spacetime and frame
dependency. As a result, it may assume distinct forms
in various coordinate systems and frames. However, the
energy-momentum 4-vector, as a real physical quantity
that is measurable by an observer, must be frame-
dependent but not coordinate-dependent. It should yield
consistent results across different frames as long as
the frames are related by Lorentz transformations of
constant coefficients.

We can obtain the energy-momentum tensor for an
arbitrary electromagnetic field using definition and
the Lagrangian density £;. For a pure field, without a
source, we can rewrite as

1
L= Zkl g“ag”ﬁemebgeweduF“bFCd. (59)

By varying with respect to ey, we obtain

0Ly
5€fA

=k FTVFN . (60)

Thus, for the energy-momentum tensor, we have

1 de 0Ly
ZeTW —
2° deau £t ecSeW

1
= Jhe eMFP 5+ ek FFr,.  (61)

where we have used Jacob’s formula for the co-factor

de = ee™feqy,. The energy-momentum can then be
written as
T = 2k (" F*P Fop — 4e® gF* o FP). (62)

This tensor represents the distribution of energy and
momentum in an electromagnetic field.

Considering a static frame e, = 47, and using the
electromagnetic field , we can evaluate the energy &,
contained within a volume V. This is given by the zeroth
component of the 4-momentum multiplied by the
speed of light, i.e.,

E=cPO =2k, /V (eOOFBE, 5 — 4 sFO  FoP) a3z

= % /V E. d*x. (63)

The components P®) are all zero in this frame. The
energy measured by the static observer, as given in ,
describes the energy of an electromagnetic field in Carte-
sian coordinates. If we were to describe it in cylindrical
spatial coordinates, using the Faraday tensor , we
would find that the result is the same. Therefore, the
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choice of mathematical coordinates does not affect the
measurement of energy.

Now, let us consider a different physical situation with
another observer moving along the x axis relative to the
the static observer with constant a velocity v. Since we
wrote the frame index in using the tetrads, we can
easily perform a Lorentz transformation on the index a
of the 4-momentum, resulting in

E=cPO =¢cAO Pt — €. (64)

This means that the energy measured by the moving
observer £ is related to the energy measured by the static
observer £ by the Lorentz factor v, as expressed in .
In this case, the component P = A1) (O)P(O) is a non-
zero quantity. The same result can be obtained if
we consider a tetrad field adapted to the tilde observer.
In this case, there is no need to perform another Lorentz
transformation, as discussed at the end of section 3] It is
important to note that while a coordinate transforma-
tion cannot change the value of the energy density, nor
can it generate a non-zero momentum for the field, a
frame transformation can lead not only to a different
energy measurement but also to the existence of a
non-zero momentum for the field. This highlights the
crucial role of frames in physics, in contrast to the lack
of physical significance of mathematical coordinates, a
point similarly demonstrated in Maxwell’s equations.

In summary, an electromagnetic field possesses an
energy density, which can be mathematically represented
by its energy-momentum tensor in a specific coordinate
system. When an observer measures the energy con-
tained in a particular region of space, they project one
index into a frame and perform a volumetric integral
in that region. As a result, they obtain an energy-
momentum P? that remains independent of the chosen
coordinates.

5. Conclusions

In this article, we have explored two fundamental con-
cepts: one of a physical nature (frames) and another
of a mathematical nature (coordinates). Both concepts
play a crucial role in the description of physical systems
using tensors. Tensors are geometric entities representing
physical quantities that remain invariant regardless of
the chosen coordinate system. Consequently, changing
coordinates should not alter the underlying physical phe-
nomena. It’s important to note that when we refer to a
physical phenomenon, it is inherently tied to an observer
who measures it. Observers themselves are physical
entities, and distinct observers may perceive different
equations of motion, particularly if one of them is not in
an inertial frame. This physical reality of the observer,
in contrast to the mathematical nature of coordinates,
implies that when changing frames, there is a physical
significance associated with that frame transformation.
Building upon these fundamental principles, we have
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presented methods for transforming both coordinates
and frames.

In order to illustrate the differentiation between
frame and coordinate transformations, we turned to a
concrete example of a relativistic theory in section
i.e., Maxwell’s electrodynamics. Through its tensorial
formalism, we elucidated how to disentangle the math-
ematical facet of the theory, denoted by the spacetime
indices, from its physical aspect, denoted by the frame
indices. We examined Maxwell’s equations within two
distinct coordinate systems within the same frame and
also within two distinct frames using the same coordi-
nate system. Thus, we conclusively demonstrated the
independence of frame and coordinate transformations.

Tetrads represent entities that hold greater fundamen-
tal significance than the metric tensor, as we can derive
the latter from the former. With 16 independent indices,
tetrads encapsulate information about both the space-
time where physical phenomena unfold and the charac-
teristics of the observer measuring these phenomena [9].
Due to their fundamental nature, we can derive physical
quantities from tetrads that would otherwise be obtained
from the metric tensor, exemplified by our derivation of
the energy-momentum tensor in subsection [£.2] In this
derivation, we calculated the energy-momentum tensor
by varying the electromagnetic Lagrangian with respect
to the tetrads, departing from the conventional approach
based on the metric tensor. This yielded a tensor with
one index projected into a frame, facilitating the natural
definition of the 4-momentum . The inclusion of
a frame index in the 4-momentum renders the energy
independent of the choice of coordinates. Had we used
P* instead, we would have introduced a physical quan-
tity contingent on coordinate choice, which would not
accurately represent the empirical energy of the field.
When obtaining the energy-momentum tensor through
the metric tensor procedure, we are compelled to project
one of the indices into a frame. However, by considering
tetrads as the fundamental geometric entity, we can
readily derive a genuine physical quantity without the
need for additional steps.

The natural implication of the energy-momentum
tensor (53) is that an observer measures not an 79
or TOO) energy density, but rather an 790 energy
density. This can have significant implications for our
interpretation of natural phenomena. In nature, we
consistently observe that the energy density of known
sources (not limited to electromagnetic ones) is always
positive. Theoretical sources that violate this almost
empirical principle are termed exotic matter. If we inter-
pret the measured energy density as T°°, we may enforce
the condition 7% > 0. However, if the energy density is
understood as T the condition 7% < 0 does not
necessarily imply 7% < 0, as we must specify the
observer making the measurement. There are physical
scenarios in which we have 7% < 0, but 700 >0
for real physical observers. One example is the energy
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density T(©° of the hypothetical source responsible
for the Alcubierre spacetime [10], which yields positive
values for stationary observers and negative values for
unphysical ones capable of traveling faster than light [7].

The utilization of tetrad fields as fundamental
variables leads to possibilities in the construction of
gravitational theories where these fields serve as the
primary variables. One such theory is the Teleparallel
Equivalent to General Relativity (TEGR), which con-
sistently yields fundamental quantities. For instance,
TEGR provides a 4-momentum for the gravitational
field, resulting in an energy expression akin to that
presented in [TT]. Within TEGR, there are several
analogies between the gravitational and electromagnetic
fields when an observer undergoes a boost, for example,
for Schwarzschild geometry, the gravitoelectromagnetic
components transform in a similar way, in the linear
regime, to the fields of Maxwell’s theory [12].

Throughout this article, our focus has been primarily
on inertial observers. However, it is worth noting that we
can extend our analysis to include accelerated observers.
When doing so, we encounter another connection related
to frame indices, known as the Levi-Civita connection,
which arises when calculating the covariant derivative.
This connection assumes a fundamental role, particu-
larly when demonstrating the relation V,e*, = 0 that
we have utilized. For comprehensive details regarding
this extension, readers are encouraged to refer to Ref. [6],
as it falls beyond the scope of the present article.

It is also pertinent to note an intriguing parallel that
warrants further exploration. In quantum mechanics, we
know that the choice of basis in which a state is expressed
does not alter the quantum state itself, but rather
dictates how measurements are conducted and inter-
preted. For instance, consider polarized light represented
as a quantum superposition of vertical and horizontal
polarization states. When we measure polarization in
this basis (vertical/horizontal), we effectively choose to
observe the light in these specific terms. However, if one
wishes to observe circular polarization, the basis must
be changed to one that describes right and left circular
polarization states. This change in basis alters how we
interpret the measurement results but does not modify
the actual physical state of the light. In essence, the
choice of basis determines the “lens” through which we
observe and measure the quantum system, but it does
not change the underlying quantum state. This concept
is pivotal in quantum mechanics and reflects the theory’s
probabilistic and non-deterministic nature. The analogy
between choosing a reference frame in General Relativity
and selecting a basis for a quantum state in Dirac
notation offers a compelling perspective on the interplay
between spacetime geometry and quantum states. This
parallelism, though not the focus of our current study,
suggests a fertile ground for future research, particularly
in understanding the quantum properties that might
influence spacetime structures, such as those in the
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Alcubierre warp drive [7), [10]. Such explorations could
potentially bridge gaps in our understanding of quantum
mechanics and general relativity, contributing to the
broader quest for a unified theory in physics.
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